
SS7 Stack User Guide

The guide to the JBoss

Communications

SS7 Stack

by Amit Bhayani, Bartosz Baranowski, and Oleg Kulikov

iii

Preface ... v

1. Document Conventions .. v

1.1. Typographic Conventions .. v

1.2. Pull-quote Conventions .. vii

1.3. Notes and Warnings .. vii

2. Provide feedback to the authors! .. viii

1. Introduction to JBoss Communications SS7 Stack ... 1

1.1. Time Division Multiplexing ... 2

2. The Basics ... 3

2.1. Shell Management client ... 6

2.2. SS7 Service ... 6

2.3. JBoss Communications SS7 Stack Usage .. 7

2.4. JBoss Communications Signaling Gateway .. 8

3. Installation and Running .. 11

3.1. Installing ... 11

3.1.1. Binary .. 11

3.2. Installing JBoss Communications SS7 Service Binary ... 14

3.3. Running JBoss Communications SS7 Service .. 14

3.3.1. Starting .. 15

3.3.2. Stopping .. 15

3.4. Configuring JBoss Communications SS7 Service .. 16

3.4.1. Configuring M3UA .. 16

3.4.2. Configuring dialogic .. 17

3.4.3. Configuring ShellExecutor ... 17

3.4.4. Configuring SCCP .. 18

3.4.5. Configuring SS7Service .. 20

3.5. Setup from source .. 20

3.5.1. Release Source Code Building .. 21

3.5.2. Development Trunk Source Building .. 22

4. Hardware Setup ... 23

4.1. Sangoma .. 23

4.2. Diguim .. 23

4.3. Dialogic .. 23

5. Shell Command Line ... 25

5.1. Introduction ... 25

5.2. Starting .. 25

5.3. Linkset Management ... 26

5.3.1. Create Linkset .. 27

5.3.2. Remove Linkset ... 28

5.3.3. Activate Linkset .. 28

5.3.4. Deactivate Linkset .. 29

5.3.5. Create Link .. 29

5.3.6. Remove Link .. 30

5.3.7. Activate Link .. 31

SS7 Stack User Guide

iv

5.3.8. Deactivate Link .. 31

5.3.9. Show status ... 32

5.4. SCCP Management .. 32

5.4.1. Rule Management .. 33

5.4.2. Address Management ... 37

5.4.3. Remote Signaling Point Management .. 41

5.4.4. Remote Sub-System Management .. 42

5.5. M3UA Management .. 44

5.5.1. M3UA Management - SCTP ... 44

5.5.2. M3UA Management .. 48

6. M3UA ... 57

6.1. JBoss Communications M3UA Design Overview ... 58

6.2. M3UAManagement ... 59

6.2.1. API's to manage resource ... 60

6.2.2. Configuration .. 61

7. ISUP ... 63

7.1. ISUP Configuration ... 63

7.2. ISUP Usage ... 65

7.3. ISUP Example .. 65

8. SCCP ... 69

8.1. Routing Management .. 69

8.1.1. GTT Configuration .. 69

8.2. SCCP Usage .. 73

8.3. Access Point .. 74

8.4. SCCP User Part Example ... 74

9. TCAP .. 77

9.1. JBoss Communications SS7 Stack TCAP Usage .. 77

9.2. JBoss Communications SS7 Stack TCAP User Part Example 79

10. MAP ... 83

10.1. SS7 Stack MAP .. 83

10.2. SS7 Stack MAP Usage ... 86

A. Java Development Kit (JDK): Installing, Configuring and Running 91

B. Setting the JBOSS_HOME Environment Variable .. 95

C. Revision History .. 99

Index ... 101

v

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention

to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts [https://

fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if

the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note:

Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These

conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to

highlight key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current

working directory, enter the cat my_next_bestselling_novel command at the

shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced

Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a

key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to

return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of

three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values

mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir

for directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue

box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles.

For example:

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch

Mouse Preferences. In the Buttons tab, click the Left-handed mouse check

box and click Close to switch the primary mouse button from the left to the right

(making the mouse suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications >

Accessories > Character Map from the main menu bar. Next, choose Search >

Find… from the Character Map menu bar, type the name of the character in the

Search field and click Next. The character you sought will be highlighted in the

Character Table. Double-click this highlighted character to place it in the Text

to copy field and then click the Copy button. Now switch back to your document

and choose Edit > Paste from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-

specific menu names; and buttons and text found within a GUI interface, all presented in

Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to

avoid the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu

of the main menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or

variable text. Italics denotes text you do not input literally or displayed text that changes depending

on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name

at a shell prompt. If the remote machine is example.com and your username on

that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file

system. For example, to remount the /home file system, the command is mount

-o remount /home.

To see the version of a currently installed package, use the rpm -q package

command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version

and release. Each word is a placeholder, either for text you enter when issuing a command or

for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new

and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

Pull-quote Conventions

vii

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and

maintaining these server-pools has been abstracted to a group of modules called

Multi-Processing Modules (MPMs). Unlike other modules, only one module from

the MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn

books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as

follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient

{

 public static void main(String args[])

 throws Exception

 {

 InitialContext iniCtx = new InitialContext();

 Object ref = iniCtx.lookup("EchoBean");

 EchoHome home = (EchoHome) ref;

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));

 }

}

1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be

overlooked.

Preface

viii

Note

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a

note should have no negative consequences, but you might miss out on a trick that

makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that

only apply to the current session, or services that need restarting before an update

will apply. Ignoring Important boxes won't cause data loss but may cause irritation

and frustration.

Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data

loss.

2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this

manual better, we would love to hear from you! Please submit a report in the the Issue Tracker

[http://bugzilla.redhat.com/bugzilla/], against the product JBoss Communications SS7 Stack ,

or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier: SS7Stack_User_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction to JBoss

Communications SS7 Stack

Important

Spaces where introduced in in some tables and code listings to ensure proper page

render.

Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard

for telecommunications defined by the International Telecommunication Union (ITU)

Telecommunication Standardization Sector (ITU-T) [http://www.voip-info.org/wiki/view/ITU] . The

standard defines the procedures and protocol by which network elements in the public switched

telephone network (PSTN)) exchange information over a digital signaling network to effect

wireless (cellular) and wireline call setup, routing and control. The ITU definition of SS7

allows for national variants such as the American National Standards Institute (ANSI) and Bell

Communications Research (Telcordia Technologies) standards used in North America and the

European Telecommunications Standards Institute (ETSI [http://www.voip-info.org/wiki/view/

ETSI]) standard used in Europe.

The hardware and software functions of the SS7 protocol are divided into functional abstractions

called "levels". These levels map loosely to the Open Systems Interconnect (OSI) 7-layer model

defined by the International Standards Organization (ISO) [http://www.iso.ch/] .

SS7 Stack overview

JBoss Communications SS7 Stack is software based SS7 protocol implementation providing Level

2 and above. The JBoss Communications SS7 Stack is a platform in the sense that it does not

provide the application itself but rather allows users to build the application

http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ITU
http://www.voip-info.org/wiki/view/ETSI
http://www.voip-info.org/wiki/view/ETSI
http://www.voip-info.org/wiki/view/ETSI
http://www.iso.ch/
http://www.iso.ch/

Chapter 1. Introduction to ...

2

1.1. Time Division Multiplexing

In circuit switched networks such as the Public Switched Telephone Network (PSTN) there

exists the need to transmit multiple subscribers’ calls along the same transmission medium. To

accomplish this, network designers make use of TDM. TDM allows switches to create channels,

also known as tributaries, within a transmission stream. A standard DS0 voice signal has a data

bit rate of 64 kbit/s, determined using Nyquist’s sampling criterion. TDM takes frames of the voice

signals and multiplexes them into a TDM frame which runs at a higher bandwidth. So if the TDM

frame consists of n voice frames, the bandwidth will be n*64 kbit/s. Each voice sample timeslot

in the TDM frame is called a channel . In European systems, TDM frames contain 30 digital

voice channels, and in American systems, they contain 24 channels. Both standards also contain

extra bits (or bit timeslots) for signalling (SS7) and synchronisation bits. Multiplexing more than

24 or 30 digital voice channels is called higher order multiplexing. Higher order multiplexing is

accomplished by multiplexing the standard TDM frames.For example, a European 120 channel

TDM frame is formed by multiplexing four standard 30 channel TDM frames.At each higher order

multiplex, four TDM frames from the immediate lower order are combined, creating multiplexes

with a bandwidth of n x 64 kbit/s, where n = 120, 480, 1920, etc.

Chapter 2.

3

The Basics

Important

Be aware, JBoss Communications SS7 Stack is subject to changes as it is under

active development!

The JBoss Communications SS7 Stack is logically divided into two sections. The lower section

includes SS7 Level 3 and below. The lower section is influenced by type of SS7 hardware (Level

1) used.

The upper section includes SS7 Level 4 and above. This logical division is widely based on

flexibility of JBoss Communications SS7 Stack to allow usage of any SS7 hardware available in

the market and yet JBoss Communications SS7 Stack Level 4 and above remains the same.

Further JBoss Communications SS7 Stack provides flexibility to use the Level 2,3 and Level 4 in

same JVM and in same machine where SS7 Hardware (Level 1) is installed. Or its also possible

to have Level 1,2,3 to be installed on separate machine and Level 4 on separate machine. In latter

case M3UA over SCTP is leveraged for communication between Level 4 and Level 3 and is called

JBoss Communications Signaling Gateway.

Bellow diagram shows complete JBoss Communications SS7 Stack in same machine

Chapter 2. The Basics

4

JBoss Communications SS7 Stack

Bellow diagram shows JBoss Communications Signaling Gateway

5

JBoss Communications Signaling Gateway

Important

If you use JBoss Communications M3UA stack, you have to use JDK 7 to run the

stack as well as to compile source code. M3UA leverages Java SCTP which is

available only from JDK 7.

Apart from advantages mentioned in

Chapter 2. The Basics

6

JBoss Communications SS7 Stack consists of following functional blocks:

2.1. Shell Management client

Shell is Command Line Interface (CLI) tool which allows to manage different aspects of JBoss

Communications SS7 Stack in interactive manner. It connects to different instances of JBoss

Communications SS7 Stack which manage Linksets, SCCP resource, routing, M3UA and SCTP.

For detailed information please refer to: Chapter 5, Shell Command Line. Usually Shell will be

invoked from remote machine(remote to Linksets and application protocols).

2.2. SS7 Service

SS7 service creates instance of JBoss Communications SCCP Stack and bind's it to JNDI name

java:/mobicents/ss7/sccp

SS7 Service is JMX based service deployed in JBoss Application Server

SS7 Service hides the details like whether Level 4 and above connects to JBoss Communications

Signaling Gateway via M3UA or SS7 Hardware installed in same machine as Level 4

Diagram below depicts elements which are deployed as part of SS7 Service:

JBoss Communications SS7 Stack Usage

7

JBoss Communications SS7 Stack SS7Service elements.

Service serves following purposes:

Expose protocol access points

Access points allows user to access lower layer protocols, like SCCP and interact through such

protocols with SS7 network.

Expose management interface

Shell Executor allows Shell client to connect and issue commands.

Configuration of SS7 Service is explained in section Section 3.4, “ Configuring JBoss

Communications SS7 Service ”

2.3. JBoss Communications SS7 Stack Usage

Diagram below depicts how JBoss Communications SS7 Stack is used:

Chapter 2. The Basics

8

JBoss Communications SS7 Stack general design

2.4. JBoss Communications Signaling Gateway

JBoss Communications Signaling Gateway (SG) is a signaling agent that receives/sends Switched

Circuit Network (SCN) native signaling at the edge of the IP network. JBoss Communications

Signaling Gateway leverages JBoss Communications M3UA Stack explained in ??? and MTP

Diagram below shows the components which are included in JBoss Communications SG.

Configuration of SG is explained in ???

JBoss Communications Signaling Gateway

9

JBoss Communications Signaling Gateway components

10

Chapter 3.

11

Installation and Running

3.1. Installing

JBoss Communications SS7 stack at its core requires only Java if you are using only M3UA.

However if you plan to use dahdi or dialogic SS7 hardware, respective SS7 cards needs to be

installed on the server along with native libraries.

A simple way to get started is to download and install binary. This will provide you with all the

dependencies you need to get going. You can obtain binary release from NOT AVAILABLE

3.1.1. Binary

The JBoss Communications SS7 Stack binary is broken down into a few modules.

The following is a description of the important services and libraries that make up JBoss

Communications SS7 Stack

• asn : Abstract Syntax Notation One (ASN.1) library is used by various JBoss Communications

SS7 Stack protocols to encode/decode the structured data exchanged between Signaling Point

over networks. To know more about asn library refer to document included with asn. Applications

using any of the JBoss Communications SS7 Stack User Protocols may never need to call

asn API directly, however it must be in classpath as JBoss Communications SS7 Stack User

Protocols refers this library.

• ss7 : ss7 contains the service that is deployed in JBoss AS and libraries that end applications

refers to. It also includes JBoss Communications Signaling Gateway. The sub-modules included

in ss7 are

• docs : User guide for JBoss Communications SS7 Stack

• mobicents-sgw : Standalone Signaling Gateway as explained in section Section 2.4, “JBoss

Communications Signaling Gateway”

mobicents-sgw binary has following layout:

Chapter 3. Installation and R...

12

• mobicents-ss7-service : SS7 service is the core engine as explained in section Section 2.2,

“SS7 Service”

mobicents-ss7-service binary has following layout:

Binary

13

• native : native libraries component to interact with SS7 Card installed on server, runtime

component. As of now native libraries are compiled only for linux OS. However if you plan to

use M3UA there is no dependency on OS as everything is 100% java.

• protocols : The JBoss Communications SS7 Stack User Protocols libraries. Your application

would directly call the API's exposed by these libraries. Depending on application you may

be either interested in TCAP, MAP or both or ISUP libraries

• shell : the Command Line Interface (CLI) module to manage the JBoss Communications

SS7 Stack. Refer Chapter 5, Shell Command Line to understand how to use shell

Binary release has following layout:

Chapter 3. Installation and R...

14

JBoss Communications SS7 Stack binary layout.

3.2. Installing JBoss Communications SS7 Service

Binary

The upper layers of Mobicents SS7 viz., TCAP, MAP depends on JBoss Communications SS7

Service and JBoss Communications SS7 Service must be installed before upper layers can be

used. The JBoss Communications SS7 Service binary requires that you have JBoss Application

Server installed and JBOSS_HOME system property set. To know further details on setting

JBOSS_HOME look Appendix B, Setting the JBOSS_HOME Environment Variable

Once JBOSS_HOME is properly set, use ant to deploy the mobicents-ss7-service, shell scripts

and shell library.

Important

Ant 1.6 (or higher) is used to install the binary. Instructions for using Ant, including

install, can be found at http://ant.apache.org/

[usr]$ cd ss7-1.0.0.CR2/ss7

[usr]$ ant deploy

To undeploy these services

[usr]$ cd ss7-1.0.0.CR2/ss7

[usr]$ ant undeploy

While above steps will deploy the necessary ss7 service and shell components, the

java.library.path should be set to point the directory containing native component or should

be copied to JBoss native library path manually. This step is only required if you are using the

SS7 board on server.

3.3. Running JBoss Communications SS7 Service

Starting or stopping JBoss Communications SS7 Service is no different than starting or stopping

JBoss Application Server

http://ant.apache.org/

Starting

15

3.3.1. Starting

Once installed, you can run server by executing the run.sh (Unix) or run.bat (Microsoft Windows)

startup scripts in the <install_directory>/bin directory (on Unix or Windows). If the service

started properly you should see following lines in the Unix terminal or Command Prompt depending

on your environment:

23:22:26,079 INFO [LinksetManager] SS7 configuration file path /

home/abhayani/workarea/mobicents/jboss-5.1.0.GA/server/default/data/

linksetmanager.xml

23:22:26,141 INFO [LinksetManager] Started LinksetManager

23:22:26,199 INFO [SS7Service] Starting SCCP stack...

23:22:26,229 INFO [SccpStackImpl] Starting ...

23:22:26,230 INFO [RouterImpl] SCCP Router configuration file: /home/

abhayani/workarea/mobicents/jboss-5.1.0.GA/server/default/deploy/mobicents-

ss7-service/sccp-routing.txt

23:22:26,261 INFO [SS7Service] SCCP stack Started. SccpProvider bound to

 java:/mobicents/ss7/sccp

23:22:26,261 INFO [ShellExecutor] Starting SS7 management shell environment

23:22:26,270 INFO [ShellExecutor] ShellExecutor listening

 at /127.0.0.1:3435

23:22:26,270 INFO [SS7Service] [[[[[[[[[Mobicents SS7 service

 started]]]]]]]]]

If you have started ss7-1.0.0.CR2 for the first time, SS7 is not configured. You need to use Shell

Client to connect to ss7-1.0.0.CR2 as defined in Chapter 5, Shell Command Line . With CLI you

can configure how service interacts with SS7 network, that is you configure either installed SS7

card and its native library\ , or M3UA layer.

Once the configured, the state and configuration of SS7 is persisted which stands server re-start.

3.3.2. Stopping

You can shut down the server(s) by executing the shutdown.sh -s (Unix) or shutdown.bat -

s (Microsoft Windows) scripts in the <install_directory>/bin directory (on Unix or Windows).

Note that if you properly stop the server, you will see the following three lines as the last output

in the Unix terminal or Command Prompt:

[Server] Shutdown complete

Halting VM

Chapter 3. Installation and R...

16

3.4. Configuring JBoss Communications SS7 Service

Configuration is done through an XML descriptor named jboss-beans.xml and is located

at $JBOSS_HOME/server/profile_name/deploy/mobicents-ss7-service/META-INF, where

profile_name is the server profile name.

The JBoss Communications SS7 Layer 4 (SCCP, ISUP) leverages either of following MTP layers

to exchange signalling messages with remote signalling points

• M3UA

• dialogic

The ss7 service will be configured with either of these services.

3.4.1. Configuring M3UA

M3UAManagement is only needed if the underlying SS7 service will leverage M3UA. M3UAManagement

configuration is further explained in Section 6.2, “M3UAManagement”

 <!--

 == -->

 <!-- M3UA -->

 <!-- M3UAManagement is managing the m3ua side commands -->

 <!--

 == -->

 <bean name="Mtp3UserPart" class="org.mobicents.protocols.ss7.m3ua.impl.M3UAManagement">

 <constructor>

 <parameter>Mtp3UserPart</parameter>

 </constructor>

 <property name="persistDir">${jboss.server.data.dir}</property>

 <property name="transportManagement">

 <inject bean="SCTPManagement" />

 </property>

 </bean>

 <bean name="M3UAShellExecutor"

 class="org.mobicents.protocols.ss7.m3ua.impl.oam.M3UAShellExecutor">

 <property name="m3uaManagement">

 <inject bean="Mtp3UserPart" />

 </property>

 <property name="sctpManagement">

 <inject bean="SCTPManagement" />

 </property>

Configuring dialogic

17

 </bean>

3.4.2. Configuring dialogic

Dialogic based MTP layer will only be used when you have installed Dialogic cards.

DialogicMtp3UserPart communicates with Dialogic hardware. Its asumed here that MTP3 and

MTP2 is leveraged from Dialogic stack either on-board or on-host.

 <!--

 == -->

 <!-- Dialogic Mtp3UserPart -->

 <!--

 == -->

 <bean name="Mtp3UserPart" class="org.mobicents.ss7.hardware.dialogic.DialogicMtp3UserPart">

 <property name="sourceModuleId">61</

property> <property name="destinationModuleId">34</property>

 </bean>

sourceModuleId is source module id and should match with configured in system.txt used by

dialogic drivers. Here 61 is assigned for Mobicents process. destinationModuleId is destination

module id. 34 is Dialogic MTP3 module id.

3.4.3. Configuring ShellExecutor

ShellExecutor is responsible for listening to incoming command. Received commands are

executed on local resources to perform actions like creation and management of SCCP routing

rule, creation and management of Linkset, management of M3UA stack.

<!-- == -->

 <!-- Shell Service -->

 <!-- == -->

 <!-- Define Shell Executor -->

 <bean name="ShellExecutor" class="org.mobicents.ss7.ShellExecutor">

 <property name="address">${jboss.bind.address}</property>

 <property name="port">3435</property>

 <property name="sccpExecutor">

 <inject bean="SccpExecutor" />

Chapter 3. Installation and R...

18

 </property>

 <property name="m3UAShellExecutor">

 <inject bean="M3UAShellExecutor" />

 </property>

 </bean>

By default ShellExecutor listens at jboss.bind.address and port 3435. You may set the address

property to any valid IP address that your host is assigned. The shell commands are exchanged

over TCP/IP.

Note

To understand JBoss bind options look at Installation_And_Getting_Started_Guide

[http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/

html_single/index.html]

3.4.4. Configuring SCCP

As name suggests SccpStack initiates the SCCP stack routines. Stack has following properties:

localSpc

property specifies the local signaling point code.

ni

specifies the network indicator that forms the part of service information octet (SIO)

Router

manages the route for SCCP. When Router is started it looks for file sccprouter.xml

containing the serialized information about routes configured. The directory path is

configurable by changing value of persistDir property

SccpResource

manages the remote resource for SCCP, for example Remote Subsystem Number

and Remote Signalling Pointcode. When SccpResource is started it looks for file

sccpresource.xml containing the serialized information about resources configured. The

directory path is configurable by changing value of persistDir property

mtp3UserPart

specifies SS7 Level 3 to be used as transport medium(be it SS7 card or M3UA)

SccpExecutor accepts sccp commands and executes necessary operations

SccpProvider is bound to JNDI by SS7 Service and is used by upper layers

 <!--

 == -->

http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html
http://docs.jboss.org/jbossas/docs/Installation_And_Getting_Started_Guide/5/html_single/index.html

Configuring SCCP

19

 <!-- SCCP Router Service -->

 <!--

 == -->

 <!--Define Router for SCCP -->

 <bean name="Router" class="org.mobicents.protocols.ss7.sccp.impl.router.Router">

 <property name="persistDir">${jboss.server.data.dir}</property>

 </bean>

 <bean name="SccpResource" class="org.mobicents.protocols.ss7.sccp.impl.SccpResource">

 <property name="persistDir">${jboss.server.data.dir}</property>

 </bean>

 <bean name="SccpExecutor"

 class="org.mobicents.protocols.ss7.sccp.impl.oam.SccpExecutor">

 <property name="router">

 <inject bean="Router" />

 </property>

 <property name="sccpResource">

 <inject bean="SccpResource" />

 </property>

 </bean>

 <bean name="SccpStack" class="org.mobicents.protocols.ss7.sccp.impl.SccpStackImpl">

 <property name="localSpc">2</property>

 <property name="ni">2</property>

 <property name="router">

 <inject bean="Router" />

 </property>

 <property name="sccpResource">

 <inject bean="SccpResource" />

 </property>

 <property name="mtp3UserPart">

 <inject bean="Mtp3UserPart" />

 </property>

 </bean>

 <bean name="SccpProvider"

 class="org.mobicents.protocols.ss7.sccp.impl.SccpProviderImpl">

 <constructor factoryMethod="getSccpProvider">

 <factory bean="SccpStack" />

 </constructor>

 </bean>

Chapter 3. Installation and R...

20

3.4.5. Configuring SS7Service

SS7Service acts as core engine binding all the components together. To get holistic view of SS7

Service look at Section 2.2, “SS7 Service”

 <!--

 == -->

 <!-- Mobicents SS7 Service -->

 <!--

 == -->

 <bean name="SS7Service" class="org.mobicents.ss7.SS7Service">

 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX(name=

 "org.mobicents.ss7:service=SS7Service",

 exposedInterface=org.mobicents.ss7.SS7ServiceMBean.class,

 registerDirectly=true)</annotation>

 <property name="jndiName">java:/mobicents/ss7/sccp</property>

 <property name="stack">

 <inject bean="SccpProvider" />

 </property>

 </bean>

SS7 service binds SccpProvider to JNDI java:/mobicents/ss7/sccp. The JNDI name can be

configured to any valid JNDI name specific to your application.

3.5. Setup from source

JBoss Communications SS7 Stack is an open source project, instructions for building from source

are part of the manual! Building from source means you can stay on top with the latest features.

Whilst aspects of JBoss Communications SS7 Stack are quite complicated, you may find ways

to become contributors.

JBoss Communications SS7 Stack works with JDK1.5 and above (If using M3UA, JDK1.7 and

above). you will also need to have the following tools installed. Minimum requirement version

numbers provided.

• Subversion Client 1.4 : Instructions for using SVN, including install, can be found at http://

subversion.tigris.org

• Maven 2.0.9 : Instructions for using Maven, including install, can be found at http://

maven.apache.org/

• Ant 1.7.0 : Instructions for using Ant, including install, can be found at http://ant.apache.org

http://subversion.tigris.org
http://subversion.tigris.org
http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org

Release Source Code Building

21

3.5.1. Release Source Code Building

1. Downloading the source code

Use SVN to checkout a specific release source, the base URL is ?, then add the specific

release version, lets consider 1.0.0.CR2.

[usr]$ svn co ?/ss7-1.0.0.CR2

2. Building the source code

Now that we have the source the next step is to build and install the source. JBoss

Communications SS7 Stack uses Maven 2 to build the system. There are three profiles.

Default one builds only java source. The other two profiles available "dahdilinux" and

"dialogiclinux" additionaly compile native modules.

Note

Native modules are supported only for linux OS for now.

Use "dahdilinux" profile if linux server on which this code is built already has dahdi module

installed. Make sure you pass "include.zap" system property pointing to correct directory

where dahdi is installed

[usr]$ cd ss7-1.0.0.CR2

[usr]$ mvn install -Pdahdilinux -Dinclude.zap=/usr/include/dahdi

Use "dialogiclinux" profile if linux server on which this code is built already has dialogic module

installed. Make sure you pass "include.dialogic" and "include.dialogic.gctlib" system property

pointing to correct directory where dialogic libraries are installed. include.dialogic.gctlib points

to directory where gctload is present (generally /opt/dpklnx for linux OS)

[usr]$ cd ss7-1.0.0.CR2

[usr]$ mvn install -Pdialogclinux -Dinclude.dialogic=/opt/dpklnx/INC -

Dinclude.dialogic.gctlib=/opt/dpklnx

Chapter 3. Installation and R...

22

To build JBoss Communications SS7 Stack without building any native libraries use

[usr]$ cd ss7-1.0.0.CR2

[usr]$ mvn install

Note

If you are using JBoss Communications SS7 Stack without any native

dependencies, JBoss Communications SS7 Stack can run on any OS.

Use Ant to build the binary .

[usr]$ cd ss7-1.0.0.CR2/release

[usr]$ ant

3.5.2. Development Trunk Source Building

Similar process as for Section 3.5.1, “Release Source Code Building”, the only change is the SVN

source code URL, which is NOT AVAILABLE.

Chapter 4.

23

Hardware Setup
This chapter contains reference to configure hardware drivers for different types of SS7 cards.

JBoss Communications SS7 Stack supports dahdi based SS7 cards like diguim and sangoma.

Generally dahdi based SS7 crads doesn't have MTP2/MTP3 support on board and relies on

external software to provide these services.

JBoss Communications SS7 Stack also supports dialogic based SS7 cards which has on board

support for MTP2/MTP3

4.1. Sangoma

To install Sangoma cards visit the Sangoma wiki at http://wiki.sangoma.com/

4.2. Diguim

To install Diguim cards visit the Diguim site at http://www.digium.com/en/products/digital/

4.3. Dialogic

To install Dialogic cards visit the Dialogic site at http://www.dialogic.com/

http://wiki.sangoma.com/
http://www.digium.com/en/products/digital/
http://www.dialogic.com/

24

Chapter 5.

25

Shell Command Line

5.1. Introduction

JBoss Communications SS7 Stack provides Shell client to manage configuration of SS7 Stack

Services. This chapter describes how to install and start client. Also it describes available

commands and provides examples. To see examples of specific flow, to perform certain tasks,

please refer to sections in chapter devoted to Linksets, SCCP or M3UA .

5.2. Starting

Shell client can be started with following command from $JBOSS_HOME/bin :

[$] ./ss7-run.sh

Once console starts, it will print following information:

===

Mobicents SS7: release.version=1.0.0-SNAPSHOT

This is free software, with components licensed under the GNU General Public

 License

version 2 and other licenses. For further details visit http://mobicents.org

===

mobicents>

The ss7-run script supports following options

Usage: SS7 [OPTIONS]

Valid Options

-v Display version number and exit

-h This help screen

Shell needs to connect to managed instance. Command to connect has following structure:

ss7 connect <IP> <PORT>

Chapter 5. Shell Command Line

26

Example 5.1. Connec to remote machine

mobicents>ss7 connect 10.65.208.215 3435

mobicents(10.65.208.215:3435)>

Note

Host IP and port are optional, if not specified, shell will try to connect to

127.0.0.1:3435

Command to disconnect has following structure:

ss7 discconnect

Example 5.2. Disconnect

mobicents(10.65.208.215:3435)>ss7 disconnect

Bye

mobicents>

5.3. Linkset Management

Linksets are managed by linkset command. It allows to perform following:

• create linkset

• delete linkset

• activate linkset

• deactivate linkset

• create link

• delete link

• activate link

Create Linkset

27

• deactivate link

• list state of linksets and present links

5.3.1. Create Linkset

Linkset can be create by issuing command with following structure:

linkset create <linkset-type> opc <point-code> apc <point-code> ni <network-id> <linkset-name>

or in case of dialogic:

linkset create dialogic opc <point-code> apc <point-code> ni <network-id> srcmod <src-mode>

 destmod <dest-mode> <linkset-name>

or in case of M3UA:

linkset create m3ua opc <point-code> apc <point-code> ni <network-id> as <as-name> <linkset-

name>

Where:

linkset-type

refers to type of linkset to be created, ie. dahdi , dialogic or m3ua . Correct values depend

on which linkset factories have been deployed.

point-code

is simply MTP point - either local(opc) or remote(dpc)

ni

is simply network identifier. It can have following values:

0

International network

1

Spare (for international use only)

2

National network

Chapter 5. Shell Command Line

28

3

Reserved for national use

linkset-name

simple string name, which identifies linkset

as-name

Name of AS that M3UALinkset wrapps. Make sure that AS is already created as explained

in Section 5.5.2.1, “Create AS”

Example 5.3. Linkset creation

mobicents(10.65.208.215:3435)>linkset create dahdi opc 1 apc 2 ni 0 linkset1

LinkSet successfully added

mobicents(10.65.208.215:3435)>linkset create dialogic opc 3 apc 4 ni 3

 srcmod 1 destmod 2 linkset2

LinkSet successfully added

5.3.2. Remove Linkset

Linkset can be deleted by issuing command with following structure:

linkset delete <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.4. Linkset Removal

mobicents(10.65.208.215:3435)>linkset delete linkset1

LinkSet successfully deleted

5.3.3. Activate Linkset

Linkset can be activated by issuing command with following structure:

Deactivate Linkset

29

linkset activate <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.5. Linkset Activation

mobicents(10.65.208.215)>linkset activate linkset1

LinkSet activated successfully

5.3.4. Deactivate Linkset

Linkset can be deactivated by issuing command with following structure:

linkset deactivate <linkset-name>

Where:

linkset-name

is name set during link creation

Example 5.6. Linkset Deactivateion

mobicents(10.65.208.215)>linkset deactivate linkset1

LinkSet deactivated successfully

5.3.5. Create Link

Link can be created in Linkset by issuing command with following structure:

linkset link create span <span-num> code <code-num> channel <channel-num> <linkset-name>

 <link-name>

Chapter 5. Shell Command Line

30

Where:

span-num

integer number. It represents port number in card(indexed from 0).

code-num

link code(sls assigned to this link).

channel-num

integer number indicating time slot number(TDM time slot).

linkset-name

is name set during link creation.

link-name

name which identifies link in linkset.

Example 5.7.

mobicents(10.65.208.215:3435)>linkset link create span 1 code 1 channel 1

 linkset1 link1

Link successfully added

5.3.6. Remove Link

Link can be removed from in Linkset by issuing command with following structure:

linkset link delete <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

Example 5.8. Link Removal

mobicents(10.65.208.215:3435)>linkset link delete linkset1 link1

Link successfully deleted

Activate Link

31

5.3.7. Activate Link

Link can be activated by issuing command with following structure:

linkset link activate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

Example 5.9. Link Activation

mobicents(10.65.208.215:3435)>linkset link activate linkset1 link1

Link activated successfully

5.3.8. Deactivate Link

Link can be deactivated by issuing command with following structure:

linkset link deactivate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

Example 5.10. Link Deactivateion

mobicents(10.65.208.215:3435)>linkset link deactivate linkset1 link1

Link deactivated successfully

Chapter 5. Shell Command Line

32

5.3.9. Show status

Linkset and Link's status can be viewed by issuing command with following structure:

linkset show

Example 5.11. Linkset Status

mobicents(10.65.208.215:3435)>linkset show

linkset1 dahdi opc=1 apc=2 ni=0

 state=UNAVAILABLE

 link1 span=1 channelId=1 code=1 state=UNAVAILABLE

The possible state of Linkset are

• UNAVAILABLE : Indicates the linkset does not have any “available” links and cannot transport

traffic

• SHUTDOWN : Indicates the linkset has been shutdown in the configuration

• AVAILABLE : Indicates the linkset has at least one available link and can carry traffic

The possible state of Link are

• UNAVAILABLE : Indicates the link is not available to carry traffic. This can occur if the link is

remotely or locally inhibited by a user. It can also be unavailable if MTP2 has not been able to

successfully activate the link connection.

• SHUTDOWN : Indicates the link has been shutdown in the configuration.

• AVAILABLE : Indicates the link is active and able to transport traffic

• FAILED : A link is FAILED when the link is not shutdown but is unavailable at layer2 for some

reason. For example Initial Alignment failed or the link test messages sent by MTP3 are not

being acknowledged.

5.4. SCCP Management

SCCP provides connectionless and connection-oriented network services. This includes

address(GTT) translation and routing, flow control segmentation and reassembly.

Rule Management

33

A global title is an address (e.g., a dialed 800 number, calling card number, or mobile subscriber

identification number) which is translated by SCCP into a destination point code and subsystem

number. A subsystem number uniquely identifies an application at the destination signaling point.

SCCP is used as the transport layer for TCAP -based services

As SCCP acts as message router, it requires means to configure routing information. CLI provides

way to easily manage routing rules information in JBoss Communications SCCP implementation.

User should also configure the remote subsystem number and remote signaling pointcode. In

some cases where global title is used, SCCP will only require configuring of remote signaling

pointcode and configuring of remote subsystem is not required.

5.4.1. Rule Management

SCCP routing rules are managed by sccp rule command. It allows to perform following:

• sccp rule create

• sccp rule modify

• sccp rule delete

• sccp rule show

5.4.1.1. Create Rule

Rule can be create by issuing command with following structure:

sccp rule create <id> <mask> <address-indicator> <point-code> <subsystem-number>

 <translation-type> <numbering-plan>

<nature-of-address-indicator> <digits> <primary-address-id> <backup-address-id>

This command should be specified after primary_add and backup_add are configured. Please

refer Section 5.4.2, “Address Management” on how to configure primary_add and backup_add

<id>

A unique number to identify this rule

<mask>

mask defines which part of the originally dialed digits remains in the translated digits and which

part is replaced by the digits from primary or backup address. mask is divided into sections

by separator /. The number of sections in mask should be equal to sections in digits passed

in this command and sections in primary or backup address

Chapter 5. Shell Command Line

34

Table 5.1. mask definitions

Mnemonic Function

- Ignore

/ Separator used to

split the mask into

sections.

K Keep the original

dialed digits of this

section into translated

digits

R Replace the original

dialed digits of this

section with same

section from primary

or backup address

into translated digits

<address-indicator>

The address indicator is the first field in SCCP Party Address(called/calling) and is one octet

in length. Its function is to indicate which information elements are present so that the address

can be interpreted, in other words, it indicates the type of addressing information that is to

be found in the address field. The addressing information from original global title is then

compared with passed address information to match the rule.

SCCP Address Indicator

Rule Management

35

<point-code>

Point code. This is ignored if bit 0 of address-indicator is not set.

<subsystem-number>

Subsystem Number. This is ignored if bit 1 of address-indicator is not set.

<translation-type>

Translation type. This is ignored if GT Indicator is 0000 or 0001

Table 5.2. Translation Type Values

Value Description

0 Unknown

1 to 63 International Service

64 to 127 Spare

128 to 254 National Network

Specific

255 Reserved for

Expansion

<numbering-plan>

The Number Plan (NP) field specifies the numbering plan that the address information follows.

This is ignored if GT Indicator is 0000, 0001 or 0010

<nature-of-address-indicator>

The Nature of Address Indicator (NAI) field defines the address range for a specific numbering

plan. This is only used if GT Indicator is 0100

<digits>

Specifies the string of digits divided into subsections using separator '/' depending on if mask

contains separator. The dialed digits should match with theses digits as per rule specified

bellow

Table 5.3. digit pattern

Value Description

- padding - ignored

* wildcard - matches

any number of digits

? wildcard - matches

exactly one digit

/ sparator used to split

the digit pattern into

sections. Each section

can be processed

Chapter 5. Shell Command Line

36

Value Description

differently as specified

by mask parameter.

<primary-address-id>

Identifies the SCCP Address used as the primary translation

<backup-address-id>

Identifies the SCCP Address used as the backup translation incase if pointcode specified by

primary address is not available

Example 5.12. SCCP Rule creation

mobicents(10.65.208.215:3435)>sccp rule create 1 R 71 2 8 0 0 3 123456789 1

mobicents(10.65.208.215:3435)>sccp rule create 2 R 71 2 8 0 0 3 123456789 1

 1

5.4.1.2. Delete SCCP Rule

SCCP Rule can be deleted by issuing command with following structure:

sccp rule delete <id>

Where:

<id>

is id set during rule creation

Example 5.13. SCCP Rule Removal

mobicents(10.65.208.215:3435)>sccp rule delete 1

Rule successfully removed

5.4.1.3. Show SCCP Rule

Rule's can be viewed by issuing command with following structure:

Address Management

37

sccp rule show <id>

Where:

<id>

id is optional. If passed only rule matching the id will be shown, else all the rules will be shown

5.4.2. Address Management

The command is used to define primary or backup address of translation. The global title address

information of this command is combined with the global title being translated by examining the

mask provided in the sccp rule create command.The syntanx remains same except for primary

address sccp primary_add is used and for backup address sccp backup_add is used

• sccp primary_add create

sccp backup_add create

• sccp primary_add modify

sccp backup_add modify

• sccp primary_add delete

sccp backup_add delete

• sccp primary_add show

sccp backup_add show

5.4.2.1. Create Address

Address can be create by issuing command with following structure:

• For primary address

sccp primary_add create <id> <address-indicator> <point-code> <subsystem-number>

 <translation-type> <numbering-plan>

<nature-of-address-indicator> <digits>

• For backup address

sccp backup_add create <id> <address-indicator> <point-code> <subsystem-number>

 <translation-type> <numbering-plan>

Chapter 5. Shell Command Line

38

<nature-of-address-indicator> <digits>

<id>

A unique number to identify this address

<address-indicator>

The address indicator is the first field in SCCP Party Address(called/calling) and is one octet

in length. Its function is to indicate which information elements are present so that the address

can be interpreted, in other words, it indicates the type of addressing information that is to

be found in the address field. The addressing information from original global title is then

compared with passed address information to match the rule.

SCCP Address Indicator

<point-code>

Point code. This is ignored if bit 0 of address-indicator is not set.

<subsystem-number>

Subsystem Number. This is ignored if bit 1 of address-indicator is not set.

<translation-type>

Translation type. This is ignored if GT Indicator is 0000 or 0001

Table 5.4. Translation Type Values

Value Description

0 Unknown

Address Management

39

Value Description

1 to 63 International Service

64 to 127 Spare

128 to 254 National Network

Specific

255 Reserved for

Expansion

<numbering-plan>

The Number Plan (NP) field specifies the numbering plan that the address information follows.

This is ignored if GT Indicator is 0000, 0001 or 0010

<nature-of-address-indicator>

The Nature of Address Indicator (NAI) field defines the address range for a specific numbering

plan. This is only used if GT Indicator is 0100

<digits>

The global title address information to translate to, specified as string of digits divided into

subsections using separator '/' depending on if mask contains separator.

In addition the digits string can contain

Table 5.5. Address digit

Value Description

- padding - ignore

/ Separtor to split the

digits into sections.

Each section is

processed differently

as specified by the

mask in sccp rule

create command.

Example 5.14. SCCP Primary Address creation

mobicents(10.65.208.215:3435)>sccp primary_add create 1 71 2 8 0 0 3

 123456789

Example 5.15. SCCP Backup Address creation

Chapter 5. Shell Command Line

40

mobicents(10.65.208.215:3435)>sccp backup_add create 1 71 3 8 0 0 3

 123456789

5.4.2.2. Delete Address

• For primary address

sccp primary_add delete <id>

• For backup address

sccp backup_add delete <id>

Where:

<id>

is id set during address creation

Example 5.16. Primary Address Removal

mobicents(10.65.208.215:3435)>sccp primary_add delete 1

Rule successfully removed

Example 5.17. Backup Address Removal

mobicents(10.65.208.215:3435)>sccp backup_add delete 1

Rule successfully removed

5.4.2.3. Show Address

Address's can be viewed by issuing command with following structure:

• For primary address

Remote Signaling Point Management

41

sccp primary_add show <id>

• For backup address

sccp backup_add show <id>

Where:

<id>

id is optional. If passed only address matching the id will be shown, else all the addresses

will be shown

5.4.3. Remote Signaling Point Management

SCCP resources includes remote signaling point and remote subsytem. Each remote signaling

point that SCCP can communicate with must be configured using sccp rsp command

• sccp rsp create

• sccp rsp modify

• sccp rsp delete

• sccp rsp show

5.4.3.1. Create Remote Signaling Point

Remote signaling point can be create by issuing command with following structure:

sccp rsp create <id> <remote-spc> <rspc-flag> <mask>

<id>

A unique number to identify this remote signaling point

<remote-spc>

The remote signaling point

<rspc-flag>

32 bit value. Not used for now. Reserved for future

<mask>

32 bit value. Not used for now. Reserved for future

Chapter 5. Shell Command Line

42

Example 5.18. Remote Signalin Point creation

mobicents(10.65.208.215:3435)>sccp rsp create 1 6477 0 0

5.4.3.2. Delete Remote Signaling Point

sccp rsp delete <id>

Where:

<id>

is id set during remote signaling point creation

Example 5.19. Remote Signaling Point removal

mobicents(10.65.208.215:3435)>sccp rsp delete 1

5.4.3.3. Show Remote Signaling Point/s

Remote signaling point can be viewed by issuing command with following structure:

sccp rsp show <id>

Where:

<id>

id is optional. If passed only remote signaling point matching the id will be shown, else all the

addresses will be shown

5.4.4. Remote Sub-System Management

SCCP resources includes remote signaling point and remote subsytem. Each remote subsystem

that SCCP can communicate with must be configured using sccp rss command

• sccp rss create

• sccp rss modify

Remote Sub-System Management

43

• sccp rss delete

• sccp rss show

This command should be specified after remote signaling point is configured. Please refer

Section 5.4.3, “Remote Signaling Point Management” on how to configure remote signaling point

5.4.4.1. Create Remote Sub-System

Remote subsystem can be created by issuing command with following structure:

sccp rss create <id> <remote-spc> <remote-ssn> <rss-flag>

<id>

A unique number to identify this remote subsystem

<remote-spc>

The remote signaling point where this remote susbsytem is deployed

<remote-ssn>

The remote subsystem number

<rss-flag>

32 bit value. Not used for now. Reserved for future

Example 5.20. Remote Sub-System creation

mobicents(10.65.208.215:3435)>sccp rss create 1 6477 8 0

5.4.4.2. Delete Remote Sub-System

sccp rss delete <id>

Where:

<id>

is id set during remote subsystem creation

Example 5.21. Remote Sub-System removal

Chapter 5. Shell Command Line

44

mobicents(10.65.208.215:3435)>sccp rss delete 1

5.4.4.3. Show Remote Sub-System/s

Remote subsystem can be viewed by issuing command with following structure:

sccp rss show <id>

Where:

<id>

id is optional. If passed only remote subsystem matching the id will be shown, else all will

be shown

5.5. M3UA Management

M3UA stack is also responsible to manage the SCTP Associations.

5.5.1. M3UA Management - SCTP

M3UA - SCTP is managed by sctp command. It allows to perform following:

• sctp server create

• sctp server destroy

• sctp server start

• sctp server stop

• sctp server show

• sctp association create

• sctp association destroy

• sctp association show

5.5.1.1. Create SCTP Server

SCTP Server can be created by issuing command with following structure:

sctp server create <server-name> <host-ip> <host-port>

M3UA Management - SCTP

45

Where:

server-name

Unique name assigned to the server.

host-ip

The host ip address where underlying SCTP server socket will bind

host-port

The host port where underlying SCTP server socket will bind

Example 5.22. SCTP Server creation

mobicents(127.0.0.1:3436)>sctp server create TestServer 127.0.0.1 2905

Successfully added Server=TestServer

5.5.1.2. Destroy SCTP Server

SCTP Server can be destroyed by issuing command with following structure:

sctp server destroy <server-name>

Where:

server-name

Unique name of the server to be destroyed. Make sure server is stopped before destroying.

Example 5.23. Destroy SCTP Server

mobicents(127.0.0.1:3436)>sctp server destroy TestServer

Successfully removed Server=TestServer

5.5.1.3. Start SCTP Server

SCTP Server can be started by issuing command with following structure:

sctp server start <server-name>

Where:

Chapter 5. Shell Command Line

46

server-name

Unique name of the server to be started. The underlying SCTP server socket is bound to

ip:port configured at creation time.

Example 5.24. Start SCTP Server

mobicents(127.0.0.1:3436)>sctp server start TestServer

Successfully started Server=TestServer

5.5.1.4. Stop SCTP Server

SCTP Server can be stopped by issuing command with following structure:

sctp server stop <server-name>

Where:

server-name

Unique name of the server to be stopped. The underlying socket is closed at this point and

all resource are released.

Example 5.25. Stop SCTP Server

mobicents(127.0.0.1:3436)>sctp server stop TestServer

Successfully stopped Server=TestServer

5.5.1.5. Show SCTP Server

SCTP Server's configuration can be viewed by issuing command with following structure:

sctp server show

Example 5.26. Show SCTP Server

mobicents(127.0.0.1:3436)>sctp server show

Not supported yet

M3UA Management - SCTP

47

5.5.1.6. Create SCTP Association

Association can be created by issuing command with following structure:

sctp association create <assoc-name> <CLIENT | SERVER> <server-name> <peer-ip> <peer-

port> <host-ip> <host-port>

Where:

assoc-name

Unique name of the association

CLIENT | SERVER

If this association is client side or server side. If its client side, it will initiate the connection to

peer and bind's to host-ip:host-port trying to connect to peer-ip:peer-port.

If its server side, it waits for peer to initiate connection. The connection request will be accepted

from peer-ip:peer-port. host-ip and host-port is not required, even if passed it will be ignored

server-name

If this association is server side, server-name must be passed to associate with server. Server

with server-name should have already been created by using command Section 5.5.1.1,

“Create SCTP Server”

If this association is client side, server-name shouldn't be passed.

Example 5.27. Create CLIENT SCTP Association

mobicents(192.168.56.1:3436)>sctp association create Assoc1 CLIENT

 192.168.56.101 2905 192.168.56.1 2905

Successfully added client Association=Assoc1

Example 5.28. Create SERVER SCTP Association

mobicents(192.168.56.1:3436)>sctp association create Assoc2 SERVER

 TestServer 192.168.56.1 2905

Successfully added server Association=TestServer

5.5.1.7. Destroy SCTP Association

Association can be destroyed by issuing command with following structure:

Chapter 5. Shell Command Line

48

sctp association destroy <assoc-name>

Where:

assoc-name

Unique name of the association to be destroyed

Example 5.29. Destroy SCTP Association

mobicents(192.168.56.1:3436)>sctp association destroy Assoc1

Successfully removed association=Assoc1

5.5.1.8. Show SCTP Association

Configuration of Association can be viewed by issuing command with following structure:

sctp association show

Example 5.30. Show SCTP Association

mobicents(192.168.56.1:3436)>sctp association show

Not supported yet

5.5.2. M3UA Management

M3UA is managed by m3ua command. It allows to perform following:

• m3ua as create

• m3ua as destroy

• m3ua as show

• m3ua asp create

• m3ua asp destroy

• m3ua asp show

• m3ua asp start

M3UA Management

49

• m3ua asp stop

• m3ua as add

• m3ua as remove

• m3ua route add

• m3ua route remove

• m3ua route show

5.5.2.1. Create AS

Application Server (AS) can be created by issuing command with following structure:

m3ua as create <as-name> <AS | SGW | IPSP> mode <SE | DE> ipspType <client | server> rc

 <routing-context> traffic-mode <traffic mode>

Where:

as-name

simple string name, which identifies AS. Make sure this is unique

AS | SGW | IPSP

Specify if this is of type AS or SGW or IPSP

SE | DE

Specify if the single or double exchange of ASP State Maintenance (ASPSM) and ASP Traffic

Maintenance (ASPTM) messages should be performed

client | server

If As if of type IPSP, speicfy here if its client or server type.

routing-context

refers to Routing Context already configured on M3UA stack on SGW side.

traffic-mode

Traffic mode for ASP's. By default its loadshare. Mobicents M3UA only supports loadshare

and override, broadcast is not supported.

Example 5.31. AS (IPSP) creation

mobicents(127.0.0.1:3435)>m3ua as create AS1 IPSP mode DE ipspType server rc

 1 traffic-mode loadshare

Successfully created AS name=AS1

Chapter 5. Shell Command Line

50

Example 5.32. AS creation

mobicents(127.0.0.1:3435)>m3ua as create AS2 AS mode SE rc 100 traffic-mode

 loadshare

Successfully created AS name=AS2

5.5.2.2. Destroy AS

Application Server (AS) can be destroyed by issuing command with following structure:

m3ua as destroy <as-name>

Where:

as-name

Simple string name, which identifies AS. Make sure AS is in state INACTIVE and all the ASP's

are unassigned before destroying

Example 5.33. Destroy AS

mobicents(127.0.0.1:3435)>m3ua as destroy AS1

Successfully destroyed AS name=AS1

5.5.2.3. Show AS

Application Server configured can viewed by issuing command with following structure:

m3ua as show

Example 5.34. Show AS

mobicents(127.0.0.1:3435)>m3ua as show

Not supported yet

5.5.2.4. Create ASP

Application Server Process (ASP) can be created by issuing command with following structure:

M3UA Management

51

m3ua asp create <asp-name> <sctp-association>

Where:

asp-name

Name of this ASP. It should be unique

sctp-association

name of SCTP Association

Example 5.35. ASP creation

mobicents(127.0.0.1:3435)>m3ua asp create ASP1 Assoc1

Successfully created AS name=ASP1

5.5.2.5. Destroy ASP

ASP can be destroyed by issuing command with following structure:

m3ua asp destroy <asp-name>

Where:

asp-name

Name of this ASP to be destroyed. Make sure ASP is stopped before destroying

Example 5.36. Destroy ASP

mobicents(127.0.0.1:3435)>m3ua asp destroy ASP1

Successfully destroyed ASP name=ASP1

5.5.2.6. Show ASP

ASP configured can be viewed by issuing command with following structure:

m3ua asp show

Chapter 5. Shell Command Line

52

Example 5.37. Show ASP

mobicents(127.0.0.1:3435)>m3ua asp show

Not supported yet

5.5.2.7. Start ASP

Application Server Process (ASP) can be started with following structure

m3ua asp start <asp-name>

Where:

asp name

name of ASP created earlier. Make sure ASP you are trying to start is assigned to at least

one AS

Example 5.38. Start ASP

mobicents(127.0.0.1:3435)>m3ua asp start ASP1

Successfully started ASP name=ASP1

5.5.2.8. Stop ASP

Application Server Process (ASP) can be stopped with following structure

m3ua asp stop <asp-name>

Where:

asp name

name of ASP started earlier.

Example 5.39. Stop ASP

mobicents(127.0.0.1:3435)>m3ua asp stop ASP1

Successfully stopped ASP name=ASP1

M3UA Management

53

5.5.2.9. Add ASP to AS

Application Server Process (ASP) can be assigned to Application Server (AS) with following

structure

m3ua as add <as-name> <asp-name>

Where:

as name

name of AS created earlier

asp name

name of ASP created earlier

Note

Mobicents M3UA supports configuring ASP to process signalling traffic related to

more than one Application Server, over a single SCTP Association. However you

need to make sure that all the AS's that ASP is shared with has Routing Context

(unique) configured.

Example 5.40. Add ASP to AS

mobicents(127.0.0.1:3435)>m3ua as add AS1 ASP1

Successfully added ASP name=ASP1 to AS name=AS1

5.5.2.10. Remove ASP from AS

Application Server Process (ASP) can be unassigned from Application Server (AS) with following

structure

m3ua as remove <as-name> <asp-name>

Where:

as name

name of AS

Chapter 5. Shell Command Line

54

asp name

name of ASP

Example 5.41. Remove ASP from AS

mobicents(127.0.0.1:3435)>m3ua as remove AS1 ASP1

Successfully removed ASP name=ASP1 from AS name=AS1

5.5.2.11. Add Route

Configure the destination point code that message will be routed to

m3ua route add <as-name> <dpc> <opc> <si>

Where:

as name

name of AS created earlier

dpc

Destination point code

opc

Originating point code

si

Service Indicator

Example 5.42. Add Route

mobicents(127.0.0.1:3435)>m3ua route add AS1 2 -1 -1

5.5.2.12. Remove Route

Remove the As configured for the destination point code

m3ua route remove <as-name> <dpc> <opc> <si>

Where:

M3UA Management

55

as name

name of AS assigned to route message for this dpc

dpc

Destination point code

opc

Originating point code

si

Service Indicator

Example 5.43. Remove Route

mobicents(127.0.0.1:3435)>m3ua route remove AS1 2 -1 -1

5.5.2.13. Show Route

Show all the routes configured

m3ua route show

Example 5.44. Show Route

mobicents(127.0.0.1:3435)>m3ua route show

56

Chapter 6.

57

M3UA
M3UA stands for MTP Level 3 (MTP3) User Adaptation Layer as defined by the IETF SIGTRAN

working group in RFC 4666 [http://tools.ietf.org/html/rfc4666] (which replaces and supersedes

RFC 3332). M3UA enables the SS7 protocol's User Parts (e.g. ISUP, SCCP and TUP) to run over

IP instead of legacy SS7. JBoss Communications M3UA Stack use the services of Mobicents

SCTP stack to transmit MTP-TRANSFER primitives.

Note

To know more about Mobicents SCTP stack, read the documentation included with

Mobicents SCTP library.

JBoss Communications M3UA Stack provides the transport of MTP-TRANSFER primitives across

an established SCTP association between an SGP and an ASP. The JBoss Communications

M3UA Stack may also be used for point-to-point signaling between two IP Server Processes

(IPSPs).

JBoss Communications M3UA Stack provides flexibility to be configured as either Single

Exchange (SE) or Double Exchange (DE) of ASP State Maintenance (ASPSM) Messages and

ASP Traffic Maintenance (ASPTM) messages

Below diagram shows various layers involved

http://tools.ietf.org/html/rfc4666
http://tools.ietf.org/html/rfc4666

Chapter 6. M3UA

58

Figure 6.1. Layers involved

6.1. JBoss Communications M3UA Design Overview

The internal structure of JBoss Communications M3UA stack looks like

M3UAManagement

59

Figure 6.2. Architecture

Instance of M3UAManagement manages the AS, AspFactory and routes.

6.2. M3UAManagement

In addition to manage As, AspFactory and routes, management also persist the state of each in

XXX_M3UA.xml file, where XXX is unique name give to management instance.

M3UAManagement is divided into two sections 1) managing the resources and 2) configuring

management

Chapter 6. M3UA

60

Important

In case of Mobicents SS7 Service, the managing resources is taken care

by Shell Command Line as explained in Section 5.5, “M3UA Management”

and configuartion of management is done in jboss-beans.xml as explained in

Section 3.4.1, “Configuring M3UA”

6.2.1. API's to manage resource

public As createAs(String asName, Functionality functionality, ExchangeType

exchangeType, IPSPType ipspType, RoutingContext rc, TrafficModeType trafficMode)

Create's a new As of type specified by Functionality. Functionality is enum of type AS,

IPSP or SGW. If the Functionality is IPSP, IPSPType type should specify if its SERVER

or CLIENT side.

If Functionality is AS, it automatically assumes client side and tries to send the ASPUP

to peer.

If Functionality is SGW, it automatically assumes server side and wait's for ASPUP from

peer.

ExchangeType specifies if its single or double exchange.

RoutingContext is not mandatory, if passed same value will be used in all the relevant ASP

Traffic Maintenance, Management and Transfer Messages

TrafficModeType is not mandatory and default is Loadshare. Broadcast mode is not

supported.

Appropiate Exception is thrown if there is already As with same name.

public AspFactory createAspFactory(String aspName, String associationName)

Create's a new AspFactory. There is one-to-one relation between AspFactory and SCTP's

Asscoiation. associationName represents the underlying SCTP Association.

Appropiate Exception's are thrown if there is already AspFactory with same name or there is

no SCTP Association with the given name or SCTP Association is already assigned to some

other AspFactory.

public As destroyAs(String asName)

Destroy existing As.

Appropiate Exception's are thrown if there is no As with given name, or As is ACTIVE or one

ore more ASP's are assigned to this AS.

public AspFactory destroyAspFactory(String aspName)

Destroy existing AspFactory.

Configuration

61

Appropiate Exception's are thrown if there is no AspFactory with given name.

public Asp assignAspToAs(String asName, String aspName)

Assign's the Asp (AspFactory with name aspName should be created before this step) to As.

Appropiate Exception's are thrown if there is no AspFactory with given name or no As with

given name.

public Asp unassignAspFromAs(String asName, String aspName)

Unassign's the Asp from As.

Appropiate Exception's are thrown if there is no ASP or As with given name.

public void startAsp(String aspName)

Start's the ASP. The ASP state maintenance messages are exchanged if this ASP is of IPSP

and client side or if its AS side. This will automatically start the underlying SCTP's Asscoiation.

Appropiate Exception's are thrown if there is no ASP with given name or ASP is already

started.

public void stopAsp(String aspName)

Stop's the ASP. This will automatically stop the underlying SCTP's Asscoiation.

Appropiate Exception's are thrown if there is no ASP with given name or ASP is already

stoped.

public void addRoute(int dpc, int opc, int si, String asName)

Add the As with the given asName as route for given dpc, opc and si. Specifying DPC is

mandatory, however opc and si can be passed as -1 which is wild character. For example if

MTP3 User Application sends message with dpc=5, opc=4 and si=3, management will try to

search the AS with exact value of dpc, opc and si. If not found, managemnt will subsitute si

with wild character and serach again. If not found management will substitute opc with wild

character and search again. If not found its an error and message is dropped with appropriate

error message.

Appropiate Exception's are thrown if there are already maximum AS configured for give

combination of dpc, opc and si or there is no As for given asName.

public void removeRoute(int dpc, int opc, int si, String asName)

Remove the As as route for passed comibnation of dpc, opc and si.

Appropiate Exception's are thrown if is no As for given asName.

6.2.2. Configuration

setPersistDir

Management when started looks for file XXX_M3UA.xml containing serialized state of

underlying As, AspFactory and routes. Set the directory path to direct M3UAManagement to

look at specified directory for underlying serialized file.

Chapter 6. M3UA

62

If directory path is not set, Management searches for system property m3ua.persist.dir to

get the path for directory. Even if m3ua.persist.dir system property is not set, Management

will look at System set property user.dir

setTransportManagement

Set the instance of SCTP transport Management

Importnat

SCTP Management instance should have already been created and configured

setMaxAsForRoute

Maximum number of AS that can be configured for routing for same DPC.

setDeliveryMessageThreadCount

Number of threads for call back to Mtp3UserPartListener. The order is maintained with

respect to SLS. For example same thread will make call back for every message with same

SLS. Default value is set to 1.

Chapter 7.

63

ISUP
ISUP(ISDN User Part or ISUP) is part of SS7 which is used to establish telephone calls and

manage call switches(exchanges). Exchanges are connected via E1 or T1 trunks. Each trunk

is divided by means of TDM into time slots. Each time slot is distinguished as circuit. Circuits

(identified by code) are used as medium to transmit voice data between user equipment (or

exchanges if more than one is involved).

ISUP allows not only to setup a call, but to exchange information about exchange state and its

resources(circuits).

Note

JBoss Communications ISUP is based on ITU-T Q.76X series of documents.

7.1. ISUP Configuration

JBoss Communications ISUP stack is configured with simple properties. Currently following

properties are supported:

Table 7.1. ISUP Configuration options

Name Default value Value range Description

ni None, must be

provided

0-3 Sets value of network

indicator that should

be used by stack.

localspc None, must be

provided

0 - (2^14)-1 Sets local signaling

point code. It will

be used as OPC

for outgoing signaling

units.

t1 4s 4s - 15s Sets T1 value. Started

when REL is sent. See

A.1/Q.764

t5 5 min. 5min - 15 min Sets T5 value. Started

when initial REL is

sent. See A.1/Q.764

t7 20s 20s -30s Sets T7 value.

(Re)Started when

Address Message is

sent. See A.1/Q.764

Chapter 7. ISUP

64

Name Default value Value range Description

t12 15s 15s - 60s Sets T12 value.

Started when BLO is

sent. See A.1/Q.764

t13 5min 5min - 15min Sets T13 value.

Started when initial

BLO is sent. See A.1/

Q.764

t14 5s 15s - 60s Sets T14 value.

Started when UBL is

sent. See A.1/Q.764

t15 5min 5min - 15min Sets T15 value.

Started when initial

UBL is sent. See A.1/

Q.764

t16 5s 15s - 60s Sets T16 value.

Started when RSC is

sent. See A.1/Q.764

t17 5min 5min - 15min Sets T17 value.

Started when initial

RSC is sent. See A.1/

Q.764

t18 5s 15s - 60s Sets T18 value.

Started when CGB is

sent. See A.1/Q.764

t19 5min 5min - 15min Sets T19 value.

Started when initial

CGB is sent. See A.1/

Q.764

t20 5s 15s - 60s Sets T20 value.

Started when CGU is

sent. See A.1/Q.764

t21 5min 5min - 15min Sets T21 value.

Started when initial

CGU is sent. See A.1/

Q.764

t22 5s 15s - 60s Sets T22 value.

Started when GRS is

sent. See A.1/Q.764

t23 5min 5min - 15min Sets T23 value.

Started when initial

ISUP Usage

65

Name Default value Value range Description

GRS is sent. See A.1/

Q.764

t28 10s 10s Sets T28 value.

Started when CQM is

sent. See A.1/Q.764

t33 12s 12s - 15s Sets T33 value.

Started when INR is

sent. See A.1/Q.764

Note that before start user must provide two interfaces to stack:

Mtp3UserPart

implementation of transport layer which should be used by stack

CircuitManager

circuit manager implementation. This interface stores information on mapping between

CIC(Circuit Identification Code) and DPC(Destination Point Code) used as destination for

outgoing messages.

7.2. ISUP Usage

The org.mobicents.protocols.ss7.isup.ISUPStack interface defines the methods

required to represent ISUP Protocol Stack. ISUPStack exposes

org.mobicents.protocols.ss7.isup.ISUPProvider. This interface defines the methods

that will be used by any registered ISUP User application implementing the

org.mobicents.protocols.ss7.isup.ISUPListener to listen ISUP events(messages and

timeouts).

7.3. ISUP Example

Below is simple example of stack usage:

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.Properties;

import org.mobicents.protocols.ss7.isup.ISUPEvent;

import org.mobicents.protocols.ss7.isup.ISUPListener;

import org.mobicents.protocols.ss7.isup.ISUPProvider;

import org.mobicents.protocols.ss7.isup.ISUPStack;

Chapter 7. ISUP

66

import org.mobicents.protocols.ss7.isup.ISUPTimeoutEvent;

import org.mobicents.protocols.ss7.isup.ParameterException;

import org.mobicents.protocols.ss7.isup.impl.ISUPStackImpl;

import org.mobicents.protocols.ss7.isup.message.ISUPMessage;

import org.mobicents.ss7.linkset.oam.Layer4;

import org.mobicents.ss7.linkset.oam.Linkset;

public class ISUPTest implements ISUPListener

{

 protected ISUPStack stack;

 protected ISUPProvider provider;

 protected Linkset isupLinkSet;

 public void setUp() throws Exception {

 this.isupLinkSet =; //same linksets as in SS7Service

 this.stack = new ISUPStackImpl();

 this.stack.configure(getSpecificConfig());

 this.provider = this.stack.getIsupProvider();

 this.provider.addListener(this);

 Mtp3UserPart userPart = // create with proper factory, dahdii, dialogi, m3ua

 this.stack.setMtp3UserPart(userPart);

 CircuitManagerImpl circuitManager = new CircuitManagerImpl();

 circuitManager.addCircuit(1, 431613); // CIC - 1, DPC for it - 431613

 this.stack.setCircuitManager(circuitManager);

 this.stack.start();

 }

 public void onEvent(ISUPEvent event) {

 ISUPMessage msg = event.getMessage();

 switch(msg.getCircuitIdentificationCode().getCIC())

 {

 case AddressCompleteMessage._COMMAND_CODE:

 //only complete

 break;

 case ConnectedMessage._COMMAND_CODE:

ISUP Example

67

 case AnswerMessage._COMMAND_CODE:

 //we are good to go

 ConnectedNumber cn = (ConnectedNumber)msg.getParameter(ConnectedNumber._PARAMETER_CODE);

 //do something

 break;

 case ReleaseMessage._COMMAND_CODE:

 //remote end does not want to talk

 RealeaseCompleteMessage rlc = provider.getMessageFactory().createRLC();

 rlc.setCircuitIdentificationCode(msg.getCircuitIdentificationCode());

 rlc.setCauseIndicators(((ReleaseComplete)msg).getCauseIndicators());

 provider.sendMessage(rlc);

 }

 }

 public void onTimeout(ISUPTimeoutEvent event) {

 switch(event.getTimerId())

 {

 case ISUPTimeoutEvent.T1:

 //do something

 break;

 case ISUPTimeoutEvent.T7:

 //do even more

 break;

 }

 }

}

68

Chapter 8.

69

SCCP
The Signaling Connection Control Part (SCCP) is defined in ITU-T Recommendations Q.711-

Q.716. SCCP sits on top of Message Transfer Part 3 (MTP3) in the SS7 protocol stack. The

SCCP provides additional network layer functions to provide transfer of noncircuit-related (NCR)

signaling information, application management procedures and alternative, more flexible methods

of routing.

8.1. Routing Management

SCCP provides a routing function that allows signaling messages to be routed to a signaling point

based on dialed digits, for example. This capability is known as Global Title Translation (GTT),

which translates what is known as a global title (for example, dialed digits for a toll free number)

into a signaling point code and a subsystem number so that it can be processed at the correct

application.

Routing rules are configured using the Command Line Interface as explained Section 5.4, “SCCP

Management”

8.1.1. GTT Configuration

GTT is performed in two stages. First is matching the rule and second is actual translation.

For matching the rule, the called party address global title digits are matched with <digits>

configured in sccp rule create Section 5.4.1.1, “Create Rule” command above. Once the digits

match actual translation is done

Matching rule

As explained in sccp rule create Section 5.4.1.1, “Create Rule” command the <digits> can

be divided into sections using the "/" separate character. Each section defines set of digits

to be matched. Wild card * can be used to match any digits and ? can be used to match

exatcly one digit

For example Rule is to match starting 4 digits (should be 1234) and doesn't care for rest; the

<digits> in the command will be 1234/*. If the Rule is such that starting 3 digits should be 123,

doesn't care for other three digits but last two digits should be 78; the <digits> in the command

will be 123/???/78. If digit to digit matching is needed the the <digits> in the command will be

exact digits to be matched without sections.

Translation

For translation each section in <mask> defined in sccp rule create command defines

how replacement operation is performed. If <mask> defines K, the originally dialed digits are

kept and if <mask> defines R the digits from primary address or back address are used. The

primary/backup address should always define the point code and the translated address will

always have this point code. If the primary/backup address defines the subsystem number the

Chapter 8. SCCP

70

translated address will also have this subsystem number. The address-indicator of translated

address is always from primary/backup address. See bellow examples

Example 1 : Remove the Global Title and add PC and SSN

GTT - Example 1

Example 2 : Partial match

Match a eight digit number starting "800", followed by any four digits, then "9". If the

translated digits is not null and if the primary/backup address has no Global Title, the

Global Title from dialed address is kept with new translated digits.

GTT Configuration

71

GTT - Example 2

Example 3 : Partial match

Match "800800", followed by any digits Remove the first six digits. Keep any following

digits in the Input. Add a PC(123) and SSN (8).

Chapter 8. SCCP

72

GTT - Example 3

Example 4 : Partial match

Match any digits keep the digits in the and add a PC(123) and SSN (8). If the translated

digits is not null and if the primary/backup address has no Global Title, the Global Title

from dialed address is kept with new translated digits.

SCCP Usage

73

GTT - Example 4

8.2. SCCP Usage

The instance of org.mobicents.protocols.ss7.sccp.SccpStack acts as starting point. All the

sccp messages sent by SCCP User Part are routed as per the rule configured in Router

Note

The term SCCP User Part refers to the applications that use SCCP's services.

The SCCP User Part gets handle to SccpStack by doing JNDI look-up as explained in Section 8.3,

“Access Point”

SccpStack exposes org.mobicents.protocols.ss7.sccp.SccpProvider that interacts directly

with SccpStack. This interface defines the methods that will be used by SCCP User

Part to send org.mobicents.protocols.ss7.sccp.message.SccpMessage and register

org.mobicents.protocols.ss7.sccp.SccpListener's to listen for incoming SCCP messages.

Chapter 8. SCCP

74

SCCP User Part registers SccpListener for specific local subsystem number. For every incoming

SccpMessage, if the called subsystem matches with this local subsystem, the corresponding

SccpListner is called.

SccpProvider also exposes org.mobicents.protocols.ss7.sccp.message.MessageFactory

and org.mobicents.protocols.ss7.sccp.parameter.ParameterFactory to create new

concrete SccpMessage viz., org.mobicents.protocols.ss7.sccp.message.UnitData

or org.mobicents.protocols.ss7.sccp.message.XUnitData passing the corresponding

parameters created by leveraging ParameterFactory.

8.3. Access Point

SS7 Service provides user with access point to SCCP protocol/stack.

To get handle to SccpStack do the JNDI look-up passing the JNDI name configured in SS7 service

as explained in Section 3.4.5, “Configuring SS7Service”

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

8.4. SCCP User Part Example

Below is SCCP User Part example listening for incoming SCCP message and sending back new

message

public class Test implements SccpListener {

 private SccpProvider sccpProvider;

 private SccpAddress localAddress;

SCCP User Part Example

75

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 public void start() throws Excetpion {

 this.sccpProvider = getSccpProvider();

 int translationType = 0;

 int subSystemNumber = 0;

 GlobalTitle gt = GlobalTitle.getInstance(translationType,

 NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");

 localAddress = new SccpAddress(gt, 0);

 this.sccpProvider.registerSccpListener(localAddress, this);

 }

 public void stop() {

 this.sccpProvider.deregisterSccpListener(localAddress);

 }

 public void onMessage(SccpMessage message) {

 if (message.getType() == MessageType.UDT) {

 throw new IlleagalArgumentException("Dont like UDT");

 } else if (message.getType() == MessageType.XUDT) {

 XUnitData xudt = (XUnitData) message;

 localAddress = ((XUnitData) message).getCalledPartyAddress();

 SccpAddress remoteAddress = ((XUnitData) message)

 .getCallingPartyAddress();

 // now decode content

Chapter 8. SCCP

76

 byte[] data = xudt.getData();

 // some data encoded in

 CallRequest cr = new CallRequest(data);

 byte[] answerData;

 if (cr.getCallee().equals(this.localAddress)) {

 EstablihsCallAnswer eca = new EstablihsCallAnswer(cr);

 answerData = eca.encode();

 } else {

 TearDownCallAnswer tdca = new TearDownCallAnswer(cr);

 answerData = tdca.encode();

 }

 HopCounter hc = this.sccpProvider.getParameterFactory()

 .createHopCounter(5);

 XUnitData sccpAnswer = this.sccpProvider

 .getMessageFactory()

 .createXUnitData(hc, xudt.getProtocolClass(),

 message.getCallingPartyAddress(), this.localAddress);

 this.sccpProvider.send(sccpAnswer);

 }

 }

}

Chapter 9.

77

TCAP
The Transaction Capabilities Application Part (TCAP) is defined in ITU-T Recommendations

Q.771-Q.775. TCAP allows services at network nodes to communicate with each other using an

agreed-upon set of data elements. Its primary purpose is to facilitate multiple concurrent dialogs

between the same sub-systems on the same machines, using Transaction IDs to differentiate

these, similar to the way TCP ports facilitate multiplexing connections between the same IP

addresses on the Internet.

9.1. JBoss Communications SS7 Stack TCAP Usage

The org.mobicents.protocols.ss7.tcap.api.TCAPStack interface defines the

methods required to represent TCAP Protocol Stack. TCAPStack exposes

org.mobicents.protocols.ss7.tcap.api.TCAPProvider that interacts directly with

TCAPStack. TCAPProvider defines methods that will be used by TCAP User Part to create

new org.mobicents.protocols.ss7.tcap.api.tc.dialog.Dialog to be sent across network.

TCAP User Part also allows to registerorg.mobicents.protocols.ss7.tcap.api.TCListener

to listen TCAP messages.

TCAPProvider also exposes

org.mobicents.protocols.ss7.tcap.api.DialogPrimitiveFactory to create dialog

primitives and org.mobicents.protocols.ss7.tcap.api.ComponentPrimitiveFactory to

create components. Components are a means of invoking an operation at a remote node

The UML Class Diagram looks like

JBoss Communications SS7 Stack TCAP Class Diagram

Chapter 9. TCAP

78

The org.mobicents.protocols.ss7.tcap.TCAPStackImpl is concrete implementation of

TCAPStack. The TCAP User Part creates instance of TCAPStackImpl passing the reference of

SccpProvider and new instance of SccpAddress representing address to which bind listener.

The TCAP stack creates internaly JBoss Communications MAP Stack implementation. Passed

SccpAddress is used to match against incoming messages destination address.

 SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get

 Provider

 SccpAddress localAddress createLocalAddress();

 TCAPStack tcapStack = new TCAPStackImpl(sccpPprovider, localAddress);

 ...

 private SccpAddress createLocalAddress()

 {

 return new SccpAddress(RoutingIndicator.ROUTING_BASED_ON_DPC_AND_SSN, 1, null, 8);

 }

The reference to SccpProvider is received from SccpStack. To get handle to SccpStack do

the JNDI look-up passing the JNDI name configured in SS7 service as explained in Section 8.3,

“Access Point”

The TCAP User Part should register the concrete implementation of TCListener with

TCAPProvider to listen for incoming TCAP messages.

 public class Client implements TCListener{

 tcapProvider = tcapStack.getProvider();

 tcapProvider.addTCListener(this);

 }

JBoss Communications SS7 Stack TCAP User Part Example

79

The TCAP User Part leverages TCAPProvider to create new Dialog. The component's between

the nodes are exchanged within this Dialog

 clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);

The TCAP User Part leverages ComponentPrimitiveFactory to create new components. These

components are sent usig the dialog

 //create some INVOKE

 Invoke invoke = cpFactory.createTCInvokeRequest();

 invoke.setInvokeId(this.clientDialog.getNewInvokeId());

 OperationCode oc = cpFactory.createOperationCode();

 oc.setLocalOperationCode(12L);

 invoke.setOperationCode(oc);

 //no parameter

 this.clientDialog.sendComponent(invoke);

9.2. JBoss Communications SS7 Stack TCAP User Part

Example

Below is TCAP User Part example. This example creates dialog and exchanges messages withing

structured dialog. Refer to source for function calls:

public class Client implements TCListener{

 //encoded Application Context Name

 public static final long[] _ACN_ = new long[] { 0, 4, 0, 0, 1, 0, 19, 2 };

 private TCAPStack stack;

 private SccpAddress thisAddress;

 private SccpAddress remoteAddress;

 private TCAPProvider tcapProvider;

Chapter 9. TCAP

80

 private Dialog clientDialog;

 Client(SccpProvider sccpPprovider, SccpAddress thisAddress,SccpAddress remoteAddress) {

 super();

 this.stack = new TCAPStackImpl(sccpPprovider,thisAddress); //pass address, so stack can

 register in SCCP

 this.runningTestCase = runningTestCase;

 this.thisAddress = thisAddress;

 this.remoteAddress = remoteAddress;

 this.tcapProvider = this.stack.getProvider();

 this.tcapProvider.addTCListener(this);

 }

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 public void start() throws TCAPException, TCAPSendException {

 clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);

 ComponentPrimitiveFactory cpFactory = this.tcapProvider.getComponentPrimitiveFactory();

 //create some INVOKE

 Invoke invoke = cpFactory.createTCInvokeRequest();

 invoke.setInvokeId(this.clientDialog.getNewInvokeId());

 OperationCode oc = cpFactory.createOperationCode();

 oc.setLocalOperationCode(12L);

 invoke.setOperationCode(oc);

 //no parameter

 this.clientDialog.sendComponent(invoke);

 ApplicationContextName acn = this.tcapProvider.getDialogPrimitiveFactory()

 .createApplicationContextName(_ACN_);

 //UI is optional!

 TCBeginRequest tcbr = this.tcapProvider.getDialogPrimitiveFactory().createBegin(this.clientDialog);

 tcbr.setApplicationContextName(acn);

JBoss Communications SS7 Stack TCAP User Part Example

81

 this.clientDialog.send(tcbr);

 }

 public void onDialogReleased(Dialog d)

 {

 d.keepAlive();

 }

 public void onInvokeTimeout(Invoke tcInvokeRequest)

 {

 }

 public void onDialogTimeout(Dialog d)

 {

 }

 public void onTCBegin(TCBeginIndication ind) {

 }

 public void onTCContinue(TCContinueIndication ind) {

 //send end

 TCEndRequest end = this.tcapProvider.getDialogPrimitiveFactory().createEnd(ind.getDialog());

 end.setTermination(TerminationType.Basic);

 try {

 ind.getDialog().send(end);

 } catch (TCAPSendException e) {

 throw new RuntimeException(e);

 }

 }

 public void onTCEnd(TCEndIndication ind) {

 //should not happen, in this scenario, we send data.

 }

 public void onTCUni(TCUniIndication ind) {

 //not going to happen

 }

Chapter 9. TCAP

82

 public void onTCPAbort(TCPAbortIndication ind) {

 // TODO Auto-generated method stub

 }

 public void onTCUserAbort(TCUserAbortIndication ind) {

 // TODO Auto-generated method stub

 }

 public static void main(String[] args)

 {

 SccpAddress localAddress = new SccpAddress(RoutingIndicator.ROUTING_BASED_ON_DPC_AND_SSN, 1, null, 8);

 SccpAddress remoteAddress = new SccpAddress(RoutingIndicator.ROUTING_BASED_ON_DPC_AND_SSN, 2, null, 8);

 Client c = new Client(getSccpProvider(),localAddress,remoteAddress);

 }

}

Chapter 10.

83

MAP
Mobile application part (MAP) is the protocol that is used to allow the GSM network nodes within

the Network Switching Subsystem (NSS) to communicate with each other to provide services,

such as roaming capability, text messaging (SMS), Unstructured Supplementary Service Data

(USSD) and subscriber authentication. MAP provides an application layer on which to build

the services that support a GSM network. This application layer provides a standardized set of

services. MAP uses the services of the SS7 network, specifically the Signaling Connection Control

Part (SCCP) and the Transaction Capabilities Application Part (TCAP)

Important

For better understanding of this chapter please read GSM 09.02.

Note

JBoss Communications SS7 Stack MAP has implementation for USSD, SMS

and Location Management Service (LMS) Messages only. Any contribution to

implement other messages are welcome. We will provide you all the help that you

may need initially.

10.1. SS7 Stack MAP

The org.mobicents.protocols.ss7.map.api.MAPStack interface defines the

methods required to represent MAP Protocol Stack. MAPStack exposes

org.mobicents.protocols.ss7.map.api.MAPProvider that interacts directly with MAPStack.

This interface defines the methods that will be used by any registered MAP User

application implementing the org.mobicents.protocols.ss7.map.api.MAPDialogListener

and org.mobicents.protocols.ss7.map.api.MAPServiceListener interface to listen MAP

messages and dialogue handling primitives.

Each MAP-User interested in listening messages specific to MAP Service implements specific

MAPServiceListener.

• MAP-User interested only in USSD messages implements

org.mobicents.protocols.ss7.map.api.service.supplementary.MAPServiceSupplementaryListener

• MAP-User interested only in SMS messages implements

org.mobicents.protocols.ss7.map.api.service.sms.MAPServiceSmsListener

• MAP-User interested only in USSD messages implements

org.mobicents.protocols.ss7.map.api.service.lsm.MAPServiceLsmListener

MAP-User interested in all the services may implement all the service listener class.

Chapter 10. MAP

84

The org.mobicents.protocols.ss7.map.MAPStackImpl is concrete implementation of

MAPStack. The MAP User application creates instance of MAPStackImpl passing the reference

of SccpProvider and Sub System Number. All incoming messages are checked for destination

SSN, if it matches with the one registered with this MAPStackImpl the corresponding listener is

called else the peer receives error.

SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get Provider

 MAPStackImpl mapStack = new MAPStackImpl(sccpPprovider, 8);

 ...

The reference to SccpProvider is received from SccpStack. To get handle to SccpStack do

the JNDI look-up passing the JNDI name configured in SS7 service as explained in Section 8.3,

“Access Point”

The MAP User application should register the concrete implementation of MAPDialogListener

with MAPProvider to listen for incoming MAP Dialog and MAP Primitive messages.

The MAP User application should register the concrete implementation of MAPServiceListener

with corresponding MAPServiceBase to listen for incoming MAP Service messages. Following

MAPServiceBase are exposed by MAPProvider

• For LSM service org.mobicents.protocols.ss7.map.api.service.lsm.MAPServiceLsm

• For SMS service org.mobicents.protocols.ss7.map.api.service.sms.MAPServiceSms

• For USSD service

org.mobicents.protocols.ss7.map.api.service.supplementary.MAPServiceSupplementary

public class MAPExample implements MAPDialogListener, MAPServiceSupplementaryListener {

 mapProvider = mapStack.getMAPProvider();

 mapProvider.addMAPDialogListener(this);

 mapProvider.getMAPServiceSupplementary().addMAPServiceListener(this);

}

Before any MAP specific service can be used, the corresponding service should be activated

SS7 Stack MAP

85

 // Make the supplimentary service activated

 mapProvider.getMAPServiceSupplementary().acivate();

The MAP User Application leverages MapServiceFactory to create instance of USSDString and

AddressString

 MapServiceFactory servFact = mapProvider.getMapServiceFactory();

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#",

 null);

 AddressString msisdn = this.servFact.createAddressString(

 AddressNature.international_number, NumberingPlan.ISDN,

 "31628838002");

The MAP User Application leverages specific MAPServiceBase to create new MAPDialog and

send message

 // First create Dialog

 MAPDialogSupplementary mapDialog = mapProvider.getMAPServiceSupplementary().createNewDialog(

 MAPApplicationContext.getInstance(MAPApplicationContextName.networkUnstructuredSsContext, MAPApplicationContextVersion.version2), destAddress,

 destReference, origAddress, origReference);

 // The dataCodingScheme is still byte, as I am not exactly getting how

 // to encode/decode this.

 byte ussdDataCodingScheme = 0x0f;

 // USSD String: *125*+31628839999#

 // The Charset is null, here we let system use default Charset (UTF-7 as

 // explained in GSM 03.38. However if MAP User wants, it can set its own

 // impl of Charset

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#", null);

 AddressString msisdn = this.servFact.createAddressString(AddressNature.international_number,

 NumberingPlan.ISDN, "31628838002");

 mapDialog.addProcessUnstructuredSSRequest(ussdDataCodingScheme, ussdString, msisdn);

Chapter 10. MAP

86

 // This will initiate the TC-BEGIN with INVOKE component

 mapDialog.send();

10.2. SS7 Stack MAP Usage

The complete example looks like

public class MAPExample implements MAPDialogListener, MAPServiceSupplementaryListener {

 private MAPStack mapStack;

 private MAPProvider mapProvider;

 MapServiceFactory servFact;

 SccpAddress destAddress = null;

 // The address created by passing the AddressNature, NumberingPlan and

 // actual address

 AddressString destReference = servFact.createAddressString(AddressNature.international_number,

 NumberingPlan.land_mobile, "204208300008002");

 SccpAddress origAddress = null;

 AddressString origReference = servFact.createAddressString(AddressNature.international_number, NumberingPlan.ISDN,

 "31628968300");

 MAPExample(SccpProvider sccpPprovider, SccpAddress address, SccpAddress remoteAddress) {

 origAddress = address;

 destAddress = remoteAddress;

 mapStack = new MAPStackImpl(sccpPprovider, 8);

 mapProvider = mapStack.getMAPProvider();

 servFact = mapProvider.getMapServiceFactory();

 mapProvider.addMAPDialogListener(this);

 mapProvider.getMAPServiceSupplementary().addMAPServiceListener(this);

 }

 private static SccpProvider getSccpProvider() throws NamingException {

 // no arg is ok, if we run in JBoss

SS7 Stack MAP Usage

87

 InitialContext ctx = new InitialContext();

 try {

 String providerJndiName = "/mobicents/ss7/sccp";

 return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();

 } finally {

 ctx.close();

 }

 }

 private static SccpAddress createLocalAddress() {

 return new SccpAddress(RoutingIndicator.ROUTING_BASED_ON_DPC_AND_SSN, 1, null, 8);

 }

 private static SccpAddress createRemoteAddress() {

 return new SccpAddress(RoutingIndicator.ROUTING_BASED_ON_DPC_AND_SSN, 2, null, 8);

 }

 public void run() throws Exception {

 // Make the supplimentary service activated

 mapProvider.getMAPServiceSupplementary().acivate();

 // First create Dialog

 MAPDialogSupplementary mapDialog = mapProvider.getMAPServiceSupplementary().createNewDialog(

 MAPApplicationContext.getInstance(MAPApplicationContextName.networkUnstructuredSsContext, MAPApplicationContextVersion.version2), destAddress,

 destReference, origAddress, origReference);

 // The dataCodingScheme is still byte, as I am not exactly getting how

 // to encode/decode this.

 byte ussdDataCodingScheme = 0x0f;

 // USSD String: *125*+31628839999#

 // The Charset is null, here we let system use default Charset (UTF-7 as

 // explained in GSM 03.38. However if MAP User wants, it can set its own

 // impl of Charset

 USSDString ussdString = servFact.createUSSDString("*125*+31628839999#", null);

 AddressString msisdn = this.servFact.createAddressString(AddressNature.international_number,

 NumberingPlan.ISDN, "31628838002");

 mapDialog.addProcessUnstructuredSSRequest(ussdDataCodingScheme, ussdString, msisdn);

 // This will initiate the TC-BEGIN with INVOKE component

Chapter 10. MAP

88

 mapDialog.send();

 }

 public void onProcessUnstructuredSSIndication(ProcessUnstructuredSSIndication procUnstrInd) {

 // TODO Auto-generated method stub

 }

 public void onUnstructuredSSIndication(UnstructuredSSIndication unstrInd) {

 // TODO Auto-generated method stub

 }

 public static void main(String[] args) throws Exception {

 SccpProvider sccpProvider = getSccpProvider(); // JNDI lookup of SCCP

 SccpAddress localAddress = createLocalAddress();

 SccpAddress remoteAddress = createRemoteAddress();

 MAPExample example = new MAPExample(sccpProvider, localAddress, remoteAddress);

 example.run();

 }

 @Override

 public void onDialogRequest(MAPDialog mapDialog, AddressString destReference, AddressString origReference,

 MAPExtensionContainer extensionContainer) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogAccept(MAPDialog mapDialog, MAPExtensionContainer extensionContainer) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogReject(MAPDialog mapDialog, MAPRefuseReason refuseReason, MAPProviderError providerError,

 ApplicationContextName alternativeApplicationContext, MAPExtensionContainer extensionContainer) {

 // TODO Auto-generated method stub

 }

SS7 Stack MAP Usage

89

 @Override

 public void onDialogUserAbort(MAPDialog mapDialog, MAPUserAbortChoice userReason,

 MAPExtensionContainer extensionContainer) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogProviderAbort(MAPDialog mapDialog, MAPAbortProviderReason abortProviderReason,

 MAPAbortSource abortSource, MAPExtensionContainer extensionContainer) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogClose(MAPDialog mapDialog) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogDelimiter(MAPDialog mapDialog) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onDialogNotice(MAPDialog mapDialog, MAPNoticeProblemDiagnostic noticeProblemDiagnostic) {

 // TODO Auto-generated method stub

 }

 public void onDialogResease(MAPDialog mapDialog) {

 }

 @Override

 public void onDialogTimeout(MAPDialog mapDialog) {

 // TODO Auto-generated method stub

 }

 @Override

Chapter 10. MAP

90

 public void onErrorComponent(MAPDialog mapDialog, Long invokeId, MAPErrorMessage mapErrorMessage) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onProviderErrorComponent(MAPDialog mapDialog, Long invokeId, MAPProviderError providerError) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onRejectComponent(MAPDialog mapDialog, Long invokeId, Problem problem) {

 // TODO Auto-generated method stub

 }

 @Override

 public void onInvokeTimeout(MAPDialog mapDialog, Long invoke) {

 // TODO Auto-generated method stub

 }

}

91

Appendix A. Java Development Kit

(JDK): Installing, Configuring and

Running
The JBoss Communications Platform is written in Java; therefore, before running any JBoss

Communications server, you must have a working Java Runtime Environment (JRE) or Java

Development Kit (JDK) installed on your system. In addition, the JRE or JDK you are using to run

JBoss Communications must be version 5 or higher1.

Should I Install the JRE or JDK? Although you can run JBoss Communications servers

using the Java Runtime Environment, we assume that most users are developers interested in

developing Java-based, JBoss Communications-driven solutions. Therefore, in this guide we

take the tact of showing how to install the full Java Development Kit.

Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter? Briefly stated: if you are

running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-

bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather

run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

• Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications when using a 64-bit JVM.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5 GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the

steps are nearly identical for installing the 64-bit version.

Downloading. You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's

website: http://java.sun.com/javase/downloads/index_jdk5.jsp. Click on the Download link next

to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next

page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

1 At this point in time, it is possible to run most JBoss Communications servers, such as the JAIN SLEE, using a Java

6 JRE or JDK. Be aware, however, that presently the XML Document Management Server does not run on Java 6. We

suggest checking the JBoss Communications web site, forums or discussion pages if you need to inquire about the status

of running the XML Document Management Server with Java 6.

http://java.sun.com/javase/downloads/index_jdk5.jsp

Appendix A. Java Development ...

92

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed

to the download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-

extracting file (for example, jdk-1_5_0_16-linux-i586-rpm.bin), and the other is merely a self-

extracting file (e.g. jdk-1_5_0_16-linux-i586.bin). If you are installing the JDK on Red Hat

Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download

the self-extracting file containing the RPM package, which will set up and use the SysV service

scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if

you will be running JBoss Communications in a production environment.

Installing. The following procedures detail how to install the Java Development Kit on both

Linux and Windows.

Procedure A.1. Installing the JDK on Linux

• Regardless of which file you downloaded, you can install it on Linux by simply making sure

the file is executable and then running it:

~]$ chmod +x "jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

~]$./"jdk-1_5_0_<minor_version>-linux-<architecture>-rpm.bin"

You Installed Using the Non-RPM Installer, but Want the

SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you

are running on an RPM-based system, you can still set up the SysV service

scripts by downloading and installing one of the -compat packages from

the JPackage project. Remember to download the -compat package which

corresponds correctly to the minor release number of the JDK you installed.

The compat packages are available from ftp://jpackage.hmdc.harvard.edu/

JPackage/1.7/generic/RPMS.non-free/.

Important

You do not need to install a -compat package in addition to the JDK if you installed

the self-extracting RPM file! The -compat package merely performs the same SysV

service script set up that the RPM version of the JDK installer does.

Procedure A.2. Installing the JDK on Windows

• Using Explorer, simply double-click the downloaded self-extracting installer and follow the

instructions to install the JDK.

ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

93

Configuring. Configuring your system for the JDK consists in two tasks: setting the JAVA_HOME

environment variable, and ensuring that the system is using the proper JDK (or JRE) using the

alternatives command. Setting JAVA_HOME usually overrides the values for java, javac and

java_sdk_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA_HOME environment variable exists and

points to the location of your JDK installation.

Setting the JAVA_HOME Environment Variable on Linux. You can determine whether

JAVA_HOME is set on your system by echoing it on the command line:

~]$ echo $JAVA_HOME

If JAVA_HOME is not set already, then you must set its value to the location of the JDK installation

on your system. You can do this by adding two lines to your personal ~/.bashrc configuration

file. Open ~/.bashrc (or create it if it doesn't exist) and add a line similar to the following one

anywhere inside the file:

export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"

You should also set this environment variable for any other users who will be running JBoss

Communications (any environment variables exported from ~/.bashrc files are local to

that user).

Setting java, javac and java_sdk_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives . On systems with

the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily

choose which JDK (or JRE) installation you wish to use, as well as which java and javac

executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select

between JDKs and JREs installed on your system:

root@localhost ~]$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

 Selection Command

 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java

 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java

*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Appendix A. Java Development ...

94

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to

run the java executable. In the alternatives information printout above, a plus (+) next to a

number indicates the one currently being used. As per alternatives' instructions, pressing

Enter will simply keep the current JVM, or you can enter the number corresponding to the

JVM you would prefer to use.

Repeat the procedure above for the javac command and the java_sdk_1.5.0 environment

variable, as the root user:

~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

Setting the JAVA_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to http://

support.microsoft.com/kb/931715.

Testing. Finally, to make sure that you are using the correct JDK or Java version (5 or higher),

and that the java executable is in your PATH, run the java -version command in the terminal

from your home directory:

~]$ java -version

java version "1.5.0_16"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)

Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)

Uninstalling. There is usually no reason (other than space concerns) to remove a particular

JDK from your system, given that you can switch between JDKs and JREs easily using

alternatives, and/or by setting JAVA_HOME.

Uninstalling the JDK on Linux. On RPM-based systems, you can uninstall the JDK using the

yum remove <jdk_rpm_name> command.

Uninstalling the JDK on Windows. On Windows systems, check the JDK entry in the Start

menu for an uninstall command, or use Add/Remove Programs.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

95

Appendix B. Setting the

JBOSS_HOME Environment Variable
The JBoss Communications Platform (JBoss Communications) is built on top of the JBoss

Enterprise Application Platform. You do not need to set the JBOSS_HOME environment variable

to run any of the JBoss Communications Platform servers unless JBOSS_HOME is already set.

The best way to know for sure whether JBOSS_HOME was set previously or not is to perform a

simple check which may save you time and frustration.

Checking to See If JBOSS_HOME is Set on Unix. At the command line, echo $JBOSS_HOME

to see if it is currently defined in your environment:

~]$ echo $JBOSS_HOME

The JBoss Communications Platform and most JBoss Communications servers are built on

top of the JBoss Enterprise Application Platform (JBoss Enterprise Application Platform).

When the JBoss Communications Platform or JBoss Communications servers are built from

source, then JBOSS_HOME must be set, because the JBoss Communications files are installed into

(or “over top of” if you prefer) a clean JBoss Enterprise Application Platform installation, and

the build process assumes that the location pointed to by the JBOSS_HOME environment variable

at the time of building is the JBoss Enterprise Application Platform installation into which you

want it to install the JBoss Communications files.

This guide does not detail building the JBoss Communications Platform or any JBoss

Communications servers from source. It is nevertheless useful to understand the role played by

JBoss AS and JBOSS_HOME in the JBoss Communications ecosystem.

The immediately-following section considers whether you need to set JBOSS_HOME at all and, if

so, when. The subsequent sections detail how to set JBOSS_HOME on Unix and Windows

Important

Even if you fall into the category below of not needing to set JBOSS_HOME, you may

want to for various reasons anyway. Also, even if you are instructed that you do

not need to set JBOSS_HOME, it is good practice nonetheless to check and make

sure that JBOSS_HOME actually isn't set or defined on your system for some reason.

This can save you both time and frustration.

You DO NOT NEED to set JBOSS_HOME if...

• ...you have installed the JBoss Communications Platform binary distribution.

Appendix B. Setting the JBOSS...

96

• ...you have installed a JBoss Communications server binary distribution which bundles JBoss

Enterprise Application Platform.

You MUST set JBOSS_HOME if...

• ...you are installing the JBoss Communications Platform or any of the JBoss Communications

servers from source.

• ...you are installing the JBoss Communications Platform binary distribution, or one of the

JBoss Communications server binary distributions, which do not bundle JBoss Enterprise

Application Platform.

Naturally, if you installed the JBoss Communications Platform or one of the JBoss

Communications server binary releases which do not bundle JBoss Enterprise Application

Platform, yet requires it to run, then you should install before setting JBOSS_HOME or proceeding

with anything else.

Setting the JBOSS_HOME Environment Variable on Unix. The JBOSS_HOME environment

variable must point to the directory which contains all of the files for the JBoss Communications

Platform or individual JBoss Communications server that you installed. As another hint, this

topmost directory contains a bin subdirectory.

Setting JBOSS_HOME in your personal ~/.bashrc startup script carries the advantage of retaining

effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a

user. On Unix, it is possible to set JBOSS_HOME as a system-wide environment variable, by defining

it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

Procedure B.1. To Set JBOSS_HOME on Unix...

1. Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text

editor, and insert the following line on its own line while substituting for the actual install

location on your system:

export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"

2. Save and close the .bashrc startup script.

3. You should source the .bashrc script to force your change to take effect, so that JBOSS_HOME

becomes set for the current session1.

~]$ source ~/.bashrc

4. Finally, ensure that JBOSS_HOME is set in the current session, and actually points to the correct

location:

1 Note that any other terminals which were opened prior to your having altered .bashrc will need to source

~/.bashrc as well should they require access to JBOSS_HOME.

You MUST set JBOSS_HOME if...

97

Note

The command line usage below is based upon a binary installation of the

JBoss Communications Platform. In this sample output, JBOSS_HOME has

been set correctly to the topmost_directory of the JBoss Communications

installation. Note that if you are installing one of the standalone JBoss

Communications servers (with JBoss AS bundled!), then JBOSS_HOME would

point to the topmost_directory of your server installation.

~]$ echo $JBOSS_HOME

/home/silas/<path>/<to>/<install_directory>

Setting the JBOSS_HOME Environment Variable on Windows. The JBOSS_HOME

environment variable must point to the directory which contains all of the files for the JBoss

Communications Platform or individual JBoss Communications server that you installed. As

another hint, this topmost directory contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to http://

support.microsoft.com/kb/931715.

http://support.microsoft.com/kb/931715
http://support.microsoft.com/kb/931715

98

99

Appendix C. Revision History
Revision History

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the JBoss Communications SS7 Stack User Guide.

Revision 1.1 Tue Dec 21 2010 AmitBhayani

Creation of the JBoss Communications SS7 Stack User Guide.

100

101

Index
F
feedback, viii

102

	SS7 Stack User Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Provide feedback to the authors!

	Chapter 1. Introduction to JBoss Communications SS7 Stack
	1.1. Time Division Multiplexing

	Chapter 2. The Basics
	2.1. Shell Management client
	2.2. SS7 Service
	2.3. JBoss Communications SS7 Stack Usage
	2.4. JBoss Communications Signaling Gateway

	Chapter 3. Installation and Running
	3.1. Installing
	3.1.1. Binary

	3.2. Installing JBoss Communications SS7 Service Binary
	3.3. Running JBoss Communications SS7 Service
	3.3.1. Starting
	3.3.2. Stopping

	3.4. Configuring JBoss Communications SS7 Service
	3.4.1. Configuring M3UA
	3.4.2. Configuring dialogic
	3.4.3. Configuring ShellExecutor
	3.4.4. Configuring SCCP
	3.4.5. Configuring SS7Service

	3.5. Setup from source
	3.5.1. Release Source Code Building
	3.5.2. Development Trunk Source Building

	Chapter 4. Hardware Setup
	4.1. Sangoma
	4.2. Diguim
	4.3. Dialogic

	Chapter 5. Shell Command Line
	5.1. Introduction
	5.2. Starting
	5.3. Linkset Management
	5.3.1. Create Linkset
	5.3.2. Remove Linkset
	5.3.3. Activate Linkset
	5.3.4. Deactivate Linkset
	5.3.5. Create Link
	5.3.6. Remove Link
	5.3.7. Activate Link
	5.3.8. Deactivate Link
	5.3.9. Show status

	5.4. SCCP Management
	5.4.1. Rule Management
	5.4.1.1. Create Rule
	5.4.1.2. Delete SCCP Rule
	5.4.1.3. Show SCCP Rule

	5.4.2. Address Management
	5.4.2.1. Create Address
	5.4.2.2. Delete Address
	5.4.2.3. Show Address

	5.4.3. Remote Signaling Point Management
	5.4.3.1. Create Remote Signaling Point
	5.4.3.2. Delete Remote Signaling Point
	5.4.3.3. Show Remote Signaling Point/s

	5.4.4. Remote Sub-System Management
	5.4.4.1. Create Remote Sub-System
	5.4.4.2. Delete Remote Sub-System
	5.4.4.3. Show Remote Sub-System/s

	5.5. M3UA Management
	5.5.1. M3UA Management - SCTP
	5.5.1.1. Create SCTP Server
	5.5.1.2. Destroy SCTP Server
	5.5.1.3. Start SCTP Server
	5.5.1.4. Stop SCTP Server
	5.5.1.5. Show SCTP Server
	5.5.1.6. Create SCTP Association
	5.5.1.7. Destroy SCTP Association
	5.5.1.8. Show SCTP Association

	5.5.2. M3UA Management
	5.5.2.1. Create AS
	5.5.2.2. Destroy AS
	5.5.2.3. Show AS
	5.5.2.4. Create ASP
	5.5.2.5. Destroy ASP
	5.5.2.6. Show ASP
	5.5.2.7. Start ASP
	5.5.2.8. Stop ASP
	5.5.2.9. Add ASP to AS
	5.5.2.10. Remove ASP from AS
	5.5.2.11. Add Route
	5.5.2.12. Remove Route
	5.5.2.13. Show Route

	Chapter 6. M3UA
	6.1. JBoss Communications M3UA Design Overview
	6.2. M3UAManagement
	6.2.1. API's to manage resource
	6.2.2. Configuration

	Chapter 7. ISUP
	7.1. ISUP Configuration
	7.2. ISUP Usage
	7.3. ISUP Example

	Chapter 8. SCCP
	8.1. Routing Management
	8.1.1. GTT Configuration

	8.2. SCCP Usage
	8.3. Access Point
	8.4. SCCP User Part Example

	Chapter 9. TCAP
	9.1. JBoss Communications SS7 Stack TCAP Usage
	9.2. JBoss Communications SS7 Stack TCAP User Part Example

	Chapter 10. MAP
	10.1. SS7 Stack MAP
	10.2. SS7 Stack MAP Usage

	Appendix A. Java Development Kit (JDK): Installing, Configuring and Running
	Appendix B. Setting the JBOSS_HOME Environment Variable
	Appendix C. Revision History
	Index

